Lycopersicon esculentum Mill. fideciklerine farklı konsantrasyonlarda uygulanan alüminyum etkilerinin LV SEM ile incelenmesi

Bu çalışmada Lycopersicon esculentum Mill. cv. H-2274 (domates) fıdeciklerinde artan alüminyum konsantrasyonlarına bağlı olarak gözlenen büyüme inhibisyonları düşük vakumlu Scanning Elektron Mikroskobu Mikrografları (LV-SEM) ve EDX Analizleri (Energy Dispersive X-Ray Microanalysis) ile incelendi. Çalışmamızda düşük konsantrasyonlarda uygulanan alüminyum kök emici tüyleri gelişiminde artışlara neden olurken, özellikle 200 ppm alüminyum konsantrasyonundan itibaren de düşüşler söz konusu idi. 5O ppm alüminyum konsantrasyonundan itibaren hipokotil epidermal hücrelerinde uzama büyümesinin önemli ölçüde indirgendiği gözlenirken, alüminyum uygulamalarına bağlı olarak kotiledonların anatomik yapılarında kaydedilen en belirgin farklılık alt epidermal hücrelerde stoma sayılarında saptanan düşüştü. L. esculentum Mili. cv. H-2274 (domates) fıdeciklerinin kökçük ve hipokotil epidermal hücrelerinin bazı makro ve mikro besin elementleri içeriklerinin de toksik konsantrasyonlarda (500 ve 1000 ppm) uygulanan alüminyumun etkisiyle değişebildiği görüldü.

Study of aluminum effects of absorption applied in different concentrations to Lycopersicon esculentum Mill. Seedlings by LV SEM

In that study,growing up inhibitions of Lycopersicon esculentum Mill.cv.H-2274 seedlings has been studied by low vacuum Scanning Electron Microscope (LV-SEM) ,and EDX (Energy Dispersive X-Ray Microanalysis) analysis. They were observed according to aluminum concentrations. As aluminum concentrations especially beginning from 200 ppm caused to decreases, effects of aluminum which were applied in low concentrations caused to increases in the growing of root hairs. The aluminum concentration from 50 ppm on, the growing in the length was observed and showed that it was low in the epidermal cells of hypocotyl. It is also found that the number of stomata in the epidermal cells decreased according to the addition of aluminum. Contents of some macro and micro nutrient elements for the root and hypocotyl cells of Lycopersicon esculentum Mill. cv. H-2274 seedlings were found that they changed with effects of the addition of aluminum in the toxic concentration (500 and 1000 ppm).

___

  • Aller, A.J., Bernal, J.L. Nozal, M.J., Deban, L., 1990. Effects of selected trace elements on plant growth. J. Sci. FoodAgric., 51: 447-479.
  • Archambault, D, J., Zhang, G., Taylor, G.J., 1996. A comparison of the kinetics of aluminum (Al) uptake and distribution in roots of wheat (Triticum aestivum) using different aluminum sources. A revision of the operational definition of symplastic Al. Physiologia Plantarum, 98: 578-586.
  • Aydemir, O., İnce, F., 1988. Bitki Besleme. Dicle üniversitesi Eğitim Fakültesi yayınları, Diyarbakır.
  • Baligar, V.C., Schaffert, R.E., Santos, H.L., Pitta, G.V.E., Bahia, A.F., 1993. Soil aluminium effects on uptake, influx and transport of nutrients in Sorghum genotypes. Plant and Soil, 150: 2, 271-277.
  • Barcelo, J., Guevara, P., Poschenrieder, C., 1993. Silicon amelioration of aluminium toxicity in teosinte (Zea mays L.ssp. mexicana), Plant and Soil, 154: 2, 249-255.
  • Bernal, J.H., Clark, R.B., 1998. Growth traits among Sorghum genotypes in response to aluminum. Journal of Plant Nutrition, 21: 2, 297-305.
  • Bozcuk, S., 1997. Bitki Fizyolojisi. Hatiboğlu Yayınevi, Ankara.
  • Brady, D.J., Edwards, D.G., Asher, C.J., Blarney, F.P.C., 1993. Calcium amelioration of aluminium toxicity effects on root hair develoment in Soybean hücre membranında dayanıklılığı ve stabiliteyi azaltıcı etkisi, hücrelerin (Glycine max. (L.) Merr.). New Phytologist, 123:3, 531-538.
  • Comin, J.J., Barloy, J., Bourrie, G., Trolard, F., 1999. Differantial effects of monomeric and polymeric aluminium on the root growth and on the biomass production of root and shoot of corn in solution culture. European Journal of Agronomy, 11:2 115-122.
  • Goransson, A., Eldhuset, T.D., 1991. Effects of aluminium on growth and nutrient uptake of small Picea abies and Pinus sylvestris plants. Trees: Structure and Function, 5:3, 136-142.
  • Horst, W.J .J., 1995. The role of the apoplast in aluminium toxicity and resistance of higher plants. Zeitschrift fur Pflanzenerrahrung undBodenkunde, 158: 5,419-428.
  • Jan, F., 1991. Aluminium effects on growth, nutrient net uptake and transport in 3 rice (Oryza sativa) cultivars with different sensitivity to aluminium. Physiologia Plantarum, 83:3, 441-448.
  • Jones, D.L., Kochian, L.V., Gilroy, S., 1998. Aluminum induces a decrease in cytosolic calcium concentrations in BY-2 tobacco cell cultures. Plant Physiology, 116: 81-89.
  • Kochian, L.V., 1995. Cellular mechanisms of aluminum toxicity and resistance in plants. Annual Review of Plant Physiology and Plant Molecular Biology. 46: 237-260.
  • Koffa, S.R, Mori, T., 1987. Effects of pH and aluminium toxicity on the growth of four strains of Leucaena leucocephala (Lam.)de Wit. Leucaena Research Reports, 8: 58-62.
  • Konishi, S., Ferguson, I.B., Putterill, J., 1988. Effect of acidic polypeptides on aluminium toxicity in tube growth of pollen from tea (Camellia sinensis L.), Plant Science, 56: 1,
  • Larsen, P.B., Degenhardt, J., Tai, C.Y., Stenzler, L.M., Howell, S.H., Kochian, L.V., 1998. Aluminum resistant Arabidopsis mutants that exhibit altered patterns of aluminum accumulation and organic acid release from roots. Plant Physiology, 117: 9-17.
  • Lidon, F.C., Barreiro, M.G., 1998. Threshold aluminum toxicity in maize. Journal of Plant Nutrition, 21: 3, 413-419.
  • Lindberg, S., Griffiths, G., 1993. Aluminium effects on ATPase activity and lipit composition of plasma membranes in sugar beet roots. Journal of Experimental Botany, 44: 1543-1550.
  • Lindberg, S., Strid, H., 1997. Aluminium induces rapid changes in cytosolic pH and free calcium and potassium concentrations in root protoplasts of wheat (Triticum aestivum). Physiologia Plantarum, 99: 3, 405-414.
  • Massot, N., Llugany, M., Poschenrieder, C., Barcelo, J., 1999. Callose production as indicator of aluminum toxicity in bean cultivars. Journal of Plant Nutrition, 22 : 1, 1-10.
  • Murashige, T., Skoog, F., 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15: 473-497.
  • Pintro, J., Calba, H., Maringa, P.R., Fallavier, P., Barloy, J., 1998. Effects of different calcium and sulfate concentrations in nutrient solutions on ionic strength values, aluminum activity, and root growth of maize plants. Journal of Plant Nutrition, 21: 11,2381-2387.
  • Rengel, Z., Robinson, D.L., 1990. Temperature and magnesium effects on aluminium toxicity in annual ryegrass (Lolium multiflorum), Plant Nutrition-Physiology and Applications, Proceedings of the Eleventh International Plant Nutrition Colloquium, Wageningen, Netherlands, 413-417.
  • Sanzonowicz, C., Smyth, T.J., Israel, D.W., 1998. Calcium alleviation of hydrogen and aluminum inhibition of soybean root extension from limed soil into acid subsurface solutions. Journal of Plant Nutrition, 21: 4, 785-804.
  • Sanzonowicz, C., Smyth, T.J., Israel, D.W., 1998. Hydrogen and aluminum inhibition 55-59.
  • of soybean root extension from limed soil into acid subsurface solutions. Journal of Plant Nutrition, 21:2, 3 87-403.
  • Simon, L., Smalley, T.J., Jones, J.B., Lasseigne, F.T., 1994. Aluminium toxicity in tomato. Part I. Growth and mineral nutrition. Journal of Plant Nutrition, 17: 2-3, 293-306.
  • Strid, H., 1996. Effects of root zone temperature on aluminium toxicity in two cultivars of spring wheat with different resistance to aluminium. Physiologia Plantarum, 97: 1, 5-12.
  • Widell, S., Asp, H., Jensen, P., 1994. Activities of plasma membrane bound enzymes isolated from roots of spruce (Picea abies) grown in the presence of aluminium. Physiologia Plantarum,92: 3, 456-466.
Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 1300-5413
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1995
  • Yayıncı: Van Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü