Deprem Kayıtlarından Elde Edilen Yatay/Düşey Spektral Oranların Ters Çözümüyle Kayma Dalga Hız Yapısının Belirlenmesi: Van Gölü Doğusu Örneği

Van Gölü doğusu farklı özellikteki aktif fayların varlığı sebebiyle deprem üretme potansiyeli yüksek olan bir bölgedir. Depremlere bağlı oluşan hasarların değerlendirilmesinde yeraltının fiziksel özelliklerinin ve deprem sırasındaki davranışının iyi bilinmesi gerekmektedir. Kayma dalgası hız değişimi ve anakaya derinliğinin belirlenmesi bu açıdan son derece önemlidir. Bu çalışmada 2011-2021 yılları arasında Van Gölü doğusunda meydana gelen ve farklı tipteki faylarda oluşmuş dokuz deprem verisinden yararlanılmıştır. 6 istasyonda kaydedilen depremler yatay-düşey spektral oran yöntemi ve Monte-Carlo ters çözüm algoritması ile analiz edilerek, kayma dalgası hız yapısı ve anakaya derinlikleri belirlenmiştir. İstasyonlar altında alüvyon birimlerinin kalınlığına bağlı olarak nispeten düşük frekans değerleri elde edilmişken, farklı kaya birimlerin varlığı baskın frekans değerlerini yükseltmiştir. Spektral oran eğrilerindeki farklı frekanslardaki pikler, jeolojik yapının özelliklerine bağlı olarak değişkenlik göstermiştir. İstasyon altı anakaya derinliği 10-350 m arasındadır. Artan anakaya derinlik seviyeleri yıkıcı depremlerin hasar oranını arttıran bir faktördür.

Determination of Shear Wave Velocity Structure by Using Inversion of Horizontal/Vertical Spectral Ratios Obtained from Earthquake Records: Example from the East of Lake Van

The eastern part of the Lake Van region has a high potential to produce destructive earthquakes due to the presence of active faults with different mechanisms. To evaluate the damages of earthquakes, it is well known the physical properties of the underground and its behavior during the earthquake. Determination of the depth-dependent shear wave velocity variation and bedrock depth is extremely important in this respect. In this study, nine earthquakes data that occurred on different types of fault between 2011-2021 in the east of the Lake Van region are used. 6 station earthquake data is analyzed using the H/V spectral ratio and the Monte-Carlo inversion, and the shear wave velocity structure and bedrock depths are calculated. The low-frequency values are relatively defined depending on the thickness of the alluvial units under the stations, whilst the presence of different rock units increases the frequency values. The peaks at different frequencies in the spectral ratio curves show variability depending on the characteristics of the geological structure. The bedrock depth under the station is between 10-350 m. Increasing bedrock depth levels are a factor that increases the damage rate of destructive earthquakes.

___

  • AFAD. (2022). Afet ve Acil Durum Yönetimi Başkanlığı. https://tadas.afad.gov.tr Erişim tarihi: 10.02.2022.
  • Akkaya, İ. (2015). The Application of HVSR microtremor survey method in Yüksekova (Hakkari) region, Eastern Turkey. Journal of African Earth Sciences, 109, 87-95.
  • Akkaya, İ., Özvan, A., Tapan, M., & Şengül, M. A. (2015). Determining the site effects of 23 October 2011 earthquake (Van province, Turkey) on the rural areas using HVSR microtremor method. Journal of Earth System Science, 124(7), 1429-1443.
  • Akkaya, İ., Özvan, A., Akın, M., Akın, M. K., & Övün, U. (2018). Comparison of SPT and Vs-based liquefaction analyses: A Case Study in Erciş (Van, Turkey). Acta Geophysica, 66, 21-38. doi :10.1007/s11600-017-0103-0.
  • Akkaya, İ., & Özvan, A. (2019). Site characterization in the Van settlement (Eastern Turkey) using surface waves and HVSR microtremor methods. Journal of Applied Geophysics, 160, 157-170.
  • Akkaya, İ. (2020a). Availability of seismic vulnerability index (Kg) in the assessment of building damage in Van, Eastern Turkey. Earthquake Engineering and Engineering Vibration, 19(1), 189-204.
  • Akkaya, İ. (2020b). Jeofizik verilerinden elde edilen sismik zayıflık indisinin yapı hasar dağılımının belirlenmesinde kullanılabilirliği. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 9(4), 1711-1723.
  • Alkan, A. (2021). Çaldıran (Van) yerleşim alanı zemin özelliklerinin yüzey dalgası yöntemleri ile incelenmesi. (Yüksek lisans tezi), Van Yüzüncü Yıl Üniversitesi, Fen Bilimleri Enstitüsü, Van, Türkiye.
  • Alkan, H., Çınar, H., & Oreshin, S. (2020). Lake Van (southeastern Turkey) experiment: Receiver function analyses of lithospheric structure from teleseismic observations. Pure and Applied Geophysics, 177, 3891-3909
  • Alkan, H., Büyüksaraç, A., Bektaş, Ö., & Işık, E. (2021). Coulomb stress change before and after 24.01.2020 Sivrice (Elazığ) earthquake (Mw=6.8) on the East Anatolian Fault Zone. Arabian Journal of Geosciences, 14, 2648.
  • Aydın, U., Pamuk, E., & Ozer, C. (2021). Investigation of soil dynamic characteristics at seismic stations using H/V spectral ratio method in Marmara Region, Turkey. Natural Hazards, doi: 10.1007/s11069-021-04959-4.
  • Bard, P. Y. (1998, Aralık). Microtremor Measurements: A tool for site effect estimation. 2nd International Symposium on the Effect of Surface Geology on Seismic Motion, Yokohama Japonya.
  • Bianco, F., Del Pezzo, E., Castellano, M., Ibanez, J., & Di Luccio, F. (2002). Separation of intrinsic and scattering seismic attenuation in the Southern Apennine zone, Italy. Geophysical Journal International, 150(1), 10–22.
  • Bignardi, S., Mantovani, A., & Abu Zeid, N. (2016). OpenHVSR: imaging the subsurface 2D/3D elastic properties through multiple HVSR modeling and inversion. Computer & Geosciences, 93, 103-13.
  • Bignardi, S., Yezzi, A. J., Fiussello, S., & Comelli, A. (2018). OpenHVSR - Processing toolkit: Enhanced HVSR processing of distributed microtremor measurements and spatial variation of their informative content. Computer & Geosciences, 120, 10-20.
  • Cukur, D., Krastel, S., Tomonaga, Y., Schmincke, H. U., Sumita, M., Meydan, A. F., Çağatay, M. N., Toker, M., Kim, S. P., Kong, G. S., & Horozal, S. (2017) Structural characteristics of the Lake Van Basin, eastern Turkey, from high-resolution seismic reflection profiles and multibeam echosounder data: geologic and tectonic implications. International Journal of Earth Sciences (Geol Rundsch), 106, 239–253.
  • Emre, Ö., Duman, T. Y., Özalp, S., Şaroğlu, F., Olgun, Ş., Elmacı, H., & Çan, T. (2018). Active fault database of Turkey. Bulletin of Earthquake Engineering, 16, 3229-3275.
  • Fah, D., Kind, F., & Giardini, D. (2001). A theoretical investigation of average H/V ratios. Geophysical Journal International, 145, 535-549.
  • Gupta, R. K., Agrawal, M., Pal, S. K., & Das, M. K. (2021). Seismic site characterization and site response study of Nirsa (India). Natural Hazards, 108, 2033-2057.
  • Herak, M. (2008). ModelHVSR- A Matlab® tool to model horizontal-to-vertical spectral ratio of ambient noise. Computer & Geosciences, 34, 1514-26.
  • Irmak, T. S., Doğan, B., & Karakaş, A. (2012). Source mechanism of the 23 October, 2011, Van (Turkey) earthquake (Mw= 7.1) and aftershocks with its tectonic implications. Earth Planets Space, 64, 991–1003.
  • Koçyiğit, A., Yilmaz, A., Adamia, S., & Kulashvili, S. (2001). Neotectonics of East Anatolian Plateau (Turkey) and Lesser Caucasus: Implication for transition from thrusting to strike-slip faulting. Geodinamica Acta, 14, 177-195.
  • Koçyiğit, A. (2013). New field and seismic data about the intraplate strike-slip deformation in Van region, East Anatolian plateau, E.Turkey. Journal of Asian Eart Sciences, 62, 586-605.
  • KOERI. (2022). Kandilli Rasathanesi ve Deprem Araştırma Enstitüsü. http://www.koeri.boun.edu.tr/sismo/2/tr/ Erişim tarihi: 10.02.2022.
  • Lachet, C., & Bard, P. Y. (1994). Numerical and theoretical investigations on the possibilities and limitations of Nakamura’s technique. Journal of Physical Earth, 42, 377-397.
  • Langston, C. (1977). Corvallis, Oregon, crustal and upper mantle receiver structure from teleseismic P and S waves. Bulletin of the Seismological Society of America, 67, 713-724.
  • Lermo, J., & Chavez-Garcia, F. J. (1993). Site effect evaluation using spectral ratios with only one station. Bulletin of the Seismological Society of America, 83, 1574-1594.
  • Mayeda, K., Koyanagi, S., Hoshiba, M., Aki, K., & Zeng, Y. (1992). A comparative study of scattering, intrinsic, and coda Q-1 for Hawaii, Long Valley, and Central California between 1.5 and 15.0 Hz. Journal of Geophysical Research, 97, B9.
  • Nakamura, Y. (1989). A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Railway Technical Research Institute Quarterly Reports, 30, 25-33.
  • Nakamura, Y. (2000, February). Clear Identification of Fundamental Idea of Nakamura’s technique and its applications. 12th World Conference on Earthquake Engineering, Auckland, New Zealand.
  • Nakamura, Y. (2008, February). On the H/V Spectrum. The 14th World Conference on Earthquake Engineering, Beijing, China.
  • Öztürk, S. (2018). Earthquake hazard potential in the Eastern Anatolian region of Turkey: seismotectonic b and Dc-values and precursory quiescence Z-value. Frontiers of Earth Science, 12(1), 215-236.
  • Özvan, A. (2004). Van Yerleşim Alanının Mühendislik Jeolojisi. (Yüksek lisans tezi), Yüzüncü Yıl Üniversitesi, Fen Bilimleri Enstitüsü, Van, Türkiye.
  • Özvan, A., Akkaya, İ., Tapan, M., & Şengül, M. A. (2005, Mart). Van yerleşkesinin deprem tehlikesi ve olası bir depremin sonuçları. Deprem Sempozyumu, Kocaeli, Türkiye.
  • Pamuk, E. (2019). Investigation of the local site effects in the northern part of the eastern Anatolian region, Turkey. Bollettino di Geofisica Teorica ed Applicata, 60(4), 549-568.
  • Pamuk, E., & Ozer, C. (2020). The Site Effect Investigation with Using Horizontal-to-Vertical Spectral Ratio Method on Earthquake Data, South of Turkey. Geotectonics, 54(4), 563-576.
  • Parolai, S., Picozzi, M., Richwalski, S. M., & Milkereit, C. (2005). Joint inversion of phase velocity dispersion and H/V ratio curves from seismic noise recordings using a genetic algorithm, considering higher modes. Geophysical Research Letters. 32, L01303.
  • Reilinger, R., Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., & Cakmak, R. (2006). GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research, 111, B05411. doi:10.1029/2005JB004051
  • Selçuk, A. S. (2016). Evaluation of the relative tectonic activity in the eastern Lake Van basin, East Turkey. Geomorphology, 270, 9-21.
  • Sengul, M. A., Gürboğa, Ş., Akkaya, İ., & Özvan, A. (2019). Deformation patterns in the Van region (Eastern Turkey) and their significance for the tectonic framework. Geologica Carpathica, 70, 193-208.
  • Şengör, A. M. C., & Yılmaz, Y. (1981). Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics, 75, 181–241.
  • Şengör, A. M. C., Ozeren, S., Genc, T., & Zor, E. (2003). East Anatolian high plateau as a mantle-supported, north-south shortened domal structure. Geophysical Research Letters, 30, 4.
  • TBDY. (2018). Türkiya Bina Deprem Yönetmeliği, İçişleri Bakanlığı, Afet ve Acil Durum Yönetimi Başkanlığı. Ankara.
  • Toker, M., Pınar, A., & Tur, H. (2017). Source mechanisms and faulting analysis of the aftershocks in the Lake Erçek area (Eastern Anatolia, Turkey) during the 2011 Van event (Mw 7.1): Implications for the regional stress field and ongoing deformation processes. Journal of Asian Earth Sciences, 150, 73-86.
  • Toker, M., Pınar, A., & Hoşkan, N. (2021). An integrated critical approach to off-fault strike-slip motion triggered by the 2011 Van mainshock (Mw 7.1), Eastern Anatolia (Turkey): New stress field constraints on subcrustal deformation. Journal of Geodynamics, 147, 101861. doi : 0.1016/j.jog.2021.101861.
  • Utkucu, M. (2013). 23 October 2011 Van, Eastern Anatolia, earthquake (MW 7.1) and seismotectonics of Lake Van area. Journal of Seismology, 17, 783–805.
Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 1300-5413
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1995
  • Yayıncı: Van Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü