BİTKİSEL ATIKLARIN BİYOPLASTİKLERE DÖNÜŞÜMÜ: TASARIM VE SANAT ÇALIŞMALARI İÇİN ÇEVRE DOSTU BİR ALTERNATİF

Bu deneysel çalışmada sürdürülebilir çevre dostu bir yaklaşımla, bitkisel atıkları kullanarak biyoplastik yapılar elde edilmiştir. Ağırlıklı olarak kaynakçada az rastlanan bitkisel atıklar farklı şekillerde kullanılarak elde edilen yapıların özellikleri incelenmiştir. Bademin dış yeşil kabuğu, prina, soğan kabuğu (mor ve sarı), limon kabuğu ve posası, muz kabuğu (posası ve lif takviyeli), mandalina kabuğu (posası ve lif takviyeli), nar kabuğu (posası ve lif takviyeli), portakal kabuğu (posası ve suyu), karpuz kabuğu, turp kabuğu, salatalık kabuğu, domates kabuğu, marul, pancar sapı, mor lahana, avakado çekirdeği, enginar yaprakları gibi doğal atık malzemeler kullanılarak değişik renk, tutum, görünüm ve dokulara sahip yüzeyler elde edilmiştir. Çeşitli formlar verilebilen bu yapıların tekstil ve moda tasarımının yanı sıra farklı ürünlerin tasarımında ve bazı sanatsal çalışmalarda özgün, yaratıcı ve yenilikçi bir şekilde kullanılabilme potansiyeli olduğu gözlenmiştir.

TRANSFORMING VEGETABLE WASTES INTO BIOPLASTICS: AN ENVIROMENTALLY FRIENDLY ALTERNATIVE FOR DESIGN AND ART WORKS

In this experimental study, bioplastic structures were obtained by using vegetable wastes with a sustainable eco-friendly approach. The properties of the structures obtained by using vegetable wastes, which rarely exist in the literature, in different ways were examined. Surfaces with different colour, handle, appearance and textures were generated by using natural wastes such as almond husk, olive pomace, onion (purple & yellow) skin, lemon pulp and peel, banana peel (pulp and fiber reinforced), tangerine peel (pulp and fiber reinforced), pomegranate peel (pulp and fiber reinforced), orange peel (pulp and juice), watermelon peel, radish peel, cucumber peel, tomato peel, lettuce, beetroot stalks, purple cabbage, avocado seed, artichoke leaves. It has been observed that these structures, which various forms can be given, have potential to design of different products and some art works beside textile and fashion design in an unique, creative and innovative way.

___

  • Referans1 Aranda-García, F. J., González-Núñez, R., Jasso-Gastinel, C. F., & Mendizábal, E. (2015). Water absorption and thermomechanical characterization of extruded starch/poly (lactic acid)/agave bagasse fiber bioplastic composites. International Journal of Polymer Science, Volume 2015, s.1-7. doi:10.1155/2015/343294
  • Referans2 Amin, M. R., Chowdhury, M. A., & Kowser, M. A. (2019). Characterization and performance analysis of composite bioplastics synthesized using titanium dioxide nanoparticles with corn starch. Heliyon, 5(8), s.1-12. doi: 10.106/j.heliyon.2019.e02009
  • Referans3 Arıkan, E. B., & Bilgen, H. D. (2019). Production of bioplastic from potato peel waste and investigation of its biodegradability. International Advanced Researches and Engineering Journal, 3(2), s. 93-97. doi: 10.35860/iarej.420633
  • Referans4 Alonso-González, M., Ramos, M., Bengoechea, C., Romero, A., & Guerrero, A. (2021). Evaluation of composition on processability and water absorption of wheat gluten-based bioplastics. Journal of Polymers and the Environment, 29(5), s. 1434-1443. doi: 10.1007/s10924-020-01969-4
  • Referans5 Bátori, V. (2018). Fruit wastes to biomaterials: Development of biofilms and 3D objects in a circular economy system (Doctoral dissertation, University of Borås). Digital version: http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-15463
  • Referans6 Baranova, M. (2019). Beyond Plastic. An exploration of potato peels as an alternative biomaterial to single-use conventional plastic (Master of Arts Thesis, Aalto University).
  • Referans7 Banat, R. (2019). Olive pomace flour as potential organic filler in composite materials: A Brief Review. American Journal of Polymer Science, 9(1), s. 10-15. doi: 10.5923/j.ajps.20190901.02
  • Referans8 Borah, P. P., Das, P., & Badwaik, L. S. (2017). Ultrasound treated potato peel and sweet lime pomace based biopolymer film development. Ultrasonics Sonochemistry, 36, s.11-19. doi: 10.1016/j.ultsonch.2016.11.010
  • Referans9 Chek, M. F., Kim, S. Y., Mori, T., Arsad, H., Samian, M. R., Sudesh, K., & Hakoshima, T. (2017). Structure of polyhydroxyalkanoate (PHA) synthase PhaC from Chromobacterium sp. USM2, producing biodegradable plastics. Scientific Reports, 7(1), s. 1-15. doi: 10.1038/s41598-017-05509-4
  • Referans10 Divyashree, A., & Hegde, G. (2015). Activated carbon nanospheres derived from bio-waste materials for supercapacitor applications–a review. Rsc Advances, 5(107), s. 88339-88352. doi: 10.1039/c5ra19392c
  • Referans11 Dias, D. D. S., Otoni, C. G., Silva, R. R. D., Meneguin, A. B., Mattoso, L. H. C., Barud, H. D. S., & Ribeiro, C. A. (2020). Large scale manufacturing of puree-only edible films from onion bulb (Allium cepa L.): Probing production and structure–processing–property correlations. Industrial Crops and Products, 145, 111847. s. 1-12. doi: 10.1016/j.indcrop.2019.111847
  • Referans12 Filipini, G. D. S., Romani, V. P., & Martins, V. G. (2020). Biodegradable and active-intelligent films based on methylcellulose and jambolão (Syzygium cumini) skins extract for food packaging. Food Hydrocolloids, 109, 106139. s. 1-10. doi:10.1016/j.foodhyd.2020.106139
  • Referans13 Fakhouri, F. M., Costa, D., Yamashita, F., Martelli, S. M., Jesus, R. C., Alganer, K., Queiroz, F. P. C. & Innocentini-Mei, L. H. (2013). Comparative study of processing methods for starch/gelatin films. Carbohydrate polymers, 95(2), s. 681-689. doi: 10.1016/j.carbpol.2013.03.027
  • Referans14 Fath, M. T. A., Nasution, H., Harahap, H., & Ayu, G. E. (2019). Biocomposite of pectin and starch filled with nanocrystalline cellulose (NCC): The effect of filler loading and glycerol addition. AIP Conference Proceedings (Vol. 2175, No. 1, p. 020012). doi: 10.1063/1.5134576
  • Referans15 Fathurohman, V., Alisaputra, D., & Sedyadi, E. (2020). The Effect of Addition of Avocado Fruit Seeds on Bioplastic Biodegradation. In Proceeding International Conference on Science and Engineering Vol. 3, s. 137-145. doi: 10.14421/icse.v3.547
  • Referans16 Grancarić, A. M., Jerković, I., & Tarbuk, A. (2013). Bioplastics in textiles. Polimeri: Časopis Za Plastiku İ Gumu, 34(1), s. 9-14. https://hrcak.srce.hr/file/156234
  • Referans17 Ganesh, K. S., Sridhar, A., & Vishali, S. (2022). Utilization of fruit and vegetable waste to produce value-added products: Conventional utilization and emerging opportunities-A review. Chemosphere, 287, 132221. s.1-14. doi: 10.1016/j.chemosphere.2021.132221
  • Referans18 Harini, K., Mohan, C. C., Ramya, K., Karthikeyan, S., & Sukumar, M. (2018). Effect of Punica granatum peel extracts on antimicrobial properties in Walnut shell cellulose reinforced Bio-thermoplastic starch films from cashew nut shells. Carbohydrate polymers, 184, s.231-242. doi: 10.1016/j.carbpol.2017.12.072
  • Referans19 Hanani, Z. N., Yee, F. C., & Nor-Khaizura, M. A. R. (2019). Effect of pomegranate (Punica granatum L.) peel powder on the antioxidant and antimicrobial properties of fish gelatin films as active packaging. Food Hydrocolloids, 89, s. 253-259. doi: 10.1016/j.foodhyd.2018.10.007
  • Referans20 Imre, B., & Pukánszky, B. (2013). Compatibilization in bio-based and biodegradable polymer blends. European Polymer Journal, 49(6), s. 1215-1233. doi: 10.1016/j.eurpolymj.2013.01.019
  • Referans21 Jang, Y. W., Lee, K. H., & Yoo, H. Y. (2021). Improved sugar recovery from orange peel by statistical optimization of thermo-alkaline pretreatment. Processes, 9(3), 409. s.1-13 doi: 10.3390/pr9030409
  • Referans22 Oliveira, T. Í. S., Rosa, M. F., Cavalcante, F. L., Pereira, P. H. F., Moates, G. K., Wellner, N., Mazzetto, S. E., Waldron, K. W. & Azeredo, H. M. (2016). Optimization of pectin extraction from banana peels with citric acid by using response surface methodology. Food Chemistry, 198, s. 113-118. doi: 10.1016/j.foodchem.2015.08.080
  • Referans23 Oliveira, T. Í. S., Redondo, L. Z., Moates, G. K., Wellner, N., Cross, K., Waldron, K. W., & Azeredo, H. M. (2016). Pomegranate peel pectin films as affected by montmorillonite. Food Chemistry, 198, s.107-112. doi: 10.1016/j.foodchem.2015.09.109
  • Referans24 Oliveira, T. Í. S., Rosa, M. F., Ridout, M. J., Cross, K., Brito, E. S., Silva, L. M., Mazzetto, S. E., Waldron, K. W., & Azeredo, H. M. (2017). Bionanocomposite films based on polysaccharides from banana peels. International Journal Of Biological Macromolecules, 101, s. 1-8. doi: 10.1016/j.ijbiomac.2017.03.068
  • Referans25 Özdemir, F., & Ramazanoğlu, D. (2019). Atık muz kabuğu, biber sapı ve kızılçam odun unu kullanılarak biyoplastik kompozit üretimi. Türkiye Ormancılık Dergisi, 20(3), s. 267-273. doi: 10.18182/tjf.551787
  • Referans26 Özdamar, E. G., & Ateş, Murat. (2018). Rethinking sustainability: A research on starch based bioplastic. Journal of Sustainable Construction Materials and Technologies, 3(3), s. 249-260. doi: 10.29187/jscmt.2018.28
  • Referans27 Priedniece, V., Spalvins, K., Ivanovs, K., Pubule, J., & Blumberga, D. (2017). Bioproducts from potatoes. A review. Environmental and Climate Technologies, 21(1), s. 18-27. doi: 10.1515/rtuect-2017-0013
  • Referans28 Reddy, M. M., Vivekanandhan, S., Misra, M., Bhatia, S. K., & Mohanty, A. K. (2013). Biobased plastics and bionanocomposites: Current status and future opportunities. Progress İn Polymer Science, 38(10-11), s.1653-1689. doi: 10.1016/j.progpolymsci.2013.05.006
  • Referans29 Siagian, M., & Tarigan, P. (2016). Production of Starch Based Bioplastic from Cassava Peel Reinforced with Microcrystalline Celllulose Avicel PH101 Using Sorbitol as Plasticizer. In Journal of Physics. Conference Series Vol. 710, No. 1. doi: 10.1088/1742-6596/710/1/012012
  • Referans30 Santos, L. G., Silva, G. F. A., Gomes, B. M., & Martins, V. G. (2021). A novel sodium alginate active films functionalized with purple onion peel extract (Allium cepa). Biocatalysis and Agricultural Biotechnology, 35, 102096. doi: 10.1016/j.bcab.2021.102096
  • Referans31 Tsang, Y. F., Kumar, V., Samadar, P., Yang, Y., Lee, J., Ok, Y. S., Song, H., Kim, K. H., Kwon, E. E. & Jeon, Y. J. (2019). Production of bioplastic through food waste valorization. Environment İnternational, 127, s. 625-644. doi: 10.1016/j.envint.2019.03.076
  • Referans32 Thielen M., (2014) Bioplastics, Plants And Crops Raw Materials Products. Federal Republic of Germany: Fachagentur Nachwachsende Rohstoffe e.V. (FNR) Agency for Renewable Resources. https://www.fnr.de/fileadmin/allgemein/pdf/broschueren/Brosch.Biokunststoffe-en-2019_Web.pdf
  • Referans33 Triawan, F., Nandiyanto, A. B. D., Suryani, I. O., Fiandini, M., & Budiman, B. A. (2020). The Influence Of Turmeric Microparticles Amount On The Mechanical And Biodegradation Properties Of Cornstarch-Based Bioplastic Material: From Bioplastic Literature Review To Experiments. Materials Physics & Mechanics, 46(1). S. 99-114 doi: 10.18149/MPM.4612020_10
  • Referans34 Wang, H., & Wang, L. (2017). Developing a bio-based packaging film from soya by-products incorporated with valonea tannin. Journal of Cleaner Production, 143, s.624-633. doi: 10.1016/j.jclepro.2016.12.064
  • Referans35 Yaradoddi, J. S., Banapurmath, N. R., Ganachari, S. V., Soudagar, M. E. M., Sajjan, A. M., Kamat, S., … & Ali, M. A. (2021). Bio-based material from fruit waste of orange peel for industrial applications. Journal of Materials Research and Technology. s. 3186-3197 doi:10.1016/j.jmrt.2021.09.016
  • Referans36 Bioplastics 101: An introduction to key terms in sustainable plastics 2021, https://www.greendotbioplastics.com/bioplastics-101-introduction-key-terms-sustainable-plastics/ adresinden 12/04/2021 tarihinde erişilmiştir.
  • Referans37 European- Bioplastics, What are bioplastics? 2021, https://www.european-bioplastics.org/bioplastics/
  • Referans38 https://docs.europeanbioplastics.org/2016/publications/fs/EUBP_fs_what_are_bioplastics.pdf
  • Referans39 European- Bioplastics, Applications for bioplastics 2021, https://www.european-bioplastics.org/market/applications-sectors/
  • Referans40 Axel Barrett (2019), Turning Agro Waste Into Bioplastics, https://bioplasticsnews.com/2019/07/31/turning-agro-waste-into-bioplastics/