Yansıma Seyahat Zamanı Tomografisi: İzmir Körfezi için Örnek Bir 2B Çalışma

Bu çalışma kapsamında, İzmir Körfezi Foça açıklarında toplanan çok kanallı bir sismik yansıma profiline, yansıma seyahat zamanı tomografisi yöntemi uygulanarak sahanın hız-derinlik modeli ilk kez ortaya çıkarılmıştır. Ham atış verileri, gürültülü izlerin ayıklanması, direk varışların kesilmesi, çentik filtreleme ve küresel genlik kazanımı gibi ön veri-işlem adımları uygulanarak iyileştirilmiştir. Önceki çalışmalarda rutin veri-işlem adımları kullanılarak elde edilen sismik göç kesitleri, bu çalışmada stratigrafik anlamda detaylı olarak yorumlanmış ve belirlenen ara yüzeyler, ön veriişlem adımları uygulanmış atış kayıtları üzerinde işaretlenmiştir. Işın izleme ile hesaplanan seyahat zamanları, eşzamanlı yinelemeli yeniden yapılandırma (SIRT) yöntemiyle ters çözüm aşamasında kullanılarak lokal ara hızlar hesaplanmıştır. Her yinelemede elde edilen bu hızlar kullanılarak, ara yüzeylerin şekli ve derinliği ortaya çıkarılmıştır. Bu işlemler, seyahat zamanı rezidüelleri (işaretlenen ve hesaplanan seyahat zamanları arasındaki farklar) minimum olana kadar yinelenmiştir. Üretilen hız tomogramı, Foça açıklarında deniz tabanından itibaren yaklaşık olarak 1 km derinliğe kadar inen, beş farklı ara yüzey (H1-H5) ile birbirinden ayrılmış dört farklı sismik ünitenin varlığını ortaya koymuştur. Bu çökellerin P dalgası ara hızları yaklaşık 1.5- 2.6 km/s’ler arasında değişmektedir. En altta yer alan akustik temel (H5), batıdan doğuya doğru 800 metrelere kadar derinleşerek bir havza geometrisi oluşturmakta; söz konusu havza doğuda ise 440 metrelere kadar sığlaşarak bir sırt yapısı ortaya koymaktadır. Havza içerisinde yer alan çökel paketleri havza geometrisi ile uyumlu olarak batıdan doğuya doğru derinleşerek kalınlaşmaktadır. Bu çalışma, yansıma seyahat zamanı tomografisi yönteminin, yeraltının derinlik ortamında stratigrafik yapısının detaylı olarak ortaya çıkarılması ve tabakaların ara hız modellerinin elde edilmesinde başarılı sonuçlar ürettiğini göstermiştir.

Reflection Traveltime Tomography: A 2D case study from Gulf of Izmir (Turkey)

In this study, reflection traveltime tomography has been carried out on a multichannel seismic reflection data in the İzmir Gulf to obtain a velocity-depth model of the study area for the first time. The time-migrated seismic sections were interpreted stratigraphically before reflection traveltime tomography application. The raw shot gathers improved by performing preliminary data-processing steps such as noise elimination by editing, muting, notch filtering and spherical gain recovery. Migrated seismic sections produced by using conventional data processing scheme in previous studies were interpreted stratigraphically in detail. The interfaces defined on the migrated time sections were picked on the improved common shot gathers. Travel times calculated by ray tracing were used during travel time inversion adopting SIRT (Simultaneous Iterative Reconstruction Technique) algorithm to estimate the local interval velocities. These interval velocities estimated in each iteration were used for calculating the shape and depth of the interfaces in the study area. The velocity field is updated by minimizing the travel time residuals. Tomogram revealed that the velocity model of a sedimentary sequence of four seismic units with a thickness of about 1 km in the offshore Foça that are separated by five different interfaces (H1-H5). The interval velocities of these sedimentary sequences vary between 1.5-2.6 km/s. The acoustic basement (H5) constitutes a basin geometry that deepens to 800 meters from west to east and gets shallow up to 440 meters in the east forming a ridge. In addition to this, the sediment units in the basins deepen from west to east in accordance with the basin geometry. The investigation provided that the reflection traveltime tomography method is a good tool to obtain stratigraphical properties of layers in depth and to estimate an accurate interval velocity model of the seismic unit.

___

  • Accaino, F., Böhm, G., Brancolini, G., 2005. Analysis of Antarctic glaciations by seismic reflection and refraction tomography. Marine Geology, 216, 145-154. Aki, K.; Lee, W.H.K., 1976. Determination of three-dimensional velocity anomalies under a seismic array using P arrival times from local earthquakes: 1.A homogeneous initial model. J. Geophys.Res., 81, 4381–4399,123.
  • Altan, Z. & Ocakoğlu, N., 2016. Shallow seismic study of the geothermal areas in the Gülbahçe Bay and İzmir Gulf (Aegean Sea, Western Turkey). Mar. Geop. Research., 37 (4), 297-311.
  • Anderson, D.L., Dziewonski, A.M., 1984. Seismic tomography. Scientific American, 251, 60-68.
  • Battaglia, J., Zollo,A., Virieux, J., Dello Iacono, D., 2008. Merging active and passive data sets in traveltime tomography: the case study of Campi Flegrei caldera (Southern Italy). Geophys. Pros., 56, 555–573.
  • Bishop, T.N., Bube, K.P., Cutler, R.T., Langan, R.T., Love, P.L., Resnick, J.R., Shuey, R.T., Spindler, D.A., Wyld, H.W., 1985. Tomographic determination of velocity and depth in laterally varying media. Geophysics, 50, 903–923.
  • Bois, P., LaPorte, M., LaVergne, M., Thomas, G., 1972. Well-to-well seismic measurements. Geophysics, 37, 741-480.
  • Bording, R.P., Gersztenkorn, A., Lines, L.R., Scales, J.A., Treitel, S.T., 1987. Applications of seismic traveltime tomography. Geophys. J.R. astr. S., 90, 285-303.
  • Bourbiē, T., Coussy, O., Zinszner, B., 1987. Acoustics of porous media. Institut Français du Pētrole Publications, Paris (syf. 240).
  • Böhm, G., Rossi, G., Vesnaver, A., 1999. Minimum time ray tracing for 3D irregular grids. J. Seism. Explor., 8, 117–131.
  • Böhm, G., Accaino, F., Rossi, G., Tinivella, U., 2006. Tomographic joint inversion of first arrivals in a real case from Saudi Arabia. Geop. Prospecting, 54, 721-730.
  • Böhm, G., Ocakoğlu, N., Picaotti, S., De Santis, L., 2009. West Antarctic Ice Sheet evolution: New insights from a seismic tomographic 3D depth model in the Eastern Ross Sea (Antarctica). Marine Geology, 266, 109-128.
  • Boehm, G., Francese, R., Giorgi, M., 2010. Bedrock detection from an integrated procedure of refraction analysis and tomographic inversion of the first arrivals. The 16th European Meeting of Environmental and Engineering Geophysics of the Near Surface Geoscience Division of EAGE, Zurich, Switzerland, Abstracts, p41.
  • Bracewell, R.N., 1956. Strip integration in radio astronomy. Australian J.of Physics, 9, 198-217.
  • Bube, K.P. and R. Burridge, 1983. The one-dimensional inverse problem of reflection seismology. SIAM Review, 25, 497-559.
  • Carrion, P., Boehm, G., Marchetti, A., Pettenati, F. ve Vesnaver, A., 1993a. Reconstruction of lateral gradients from reflection tomography. J. Explor. Seism, 2, 55-67.
  • Çiftçi, N. B., Temel, R. O. ve Terzioğlu, N. M., 2004. Neogene stratigraphy and hydrocarbon system of the region surrounding the Gulf of Edremit, NW Anatolia, Turkey. Bulletin of Turkish Association of Petroleum Geologists, 16, 81–104.
  • Cormack, A.M., 1963, Representation of a function by its line integrals with some radiological applications. J. Appl. Phys., 34, 2722-2727.
  • Cormack, A.M., 1964. Representation of a function by its line integrals with some radiological applications. II. J. Appl. Phys., 35, 2908-2913.
  • DeRosier, D.J., Klug, A., 1968. Reconstruction of Three Dimensional Structures from Electron Micrographs. Nature, 217, 130-134.
  • Dines, K. A. ve Lytle, R. J., 1979. Computerized geophysical tomography. Proceedings of the IEEE, 67(7): 1065-1073.
  • Dziewonski, A.M., Hager, B.H., O’Connell, R.J., 1977. Large-scale heterogeneities in the lower mantle. J. Geophysical Res., 82(2), 239-255.
  • Gilbert, P.F.C., 1972. An iterative method for three-dimensional reconstruction of an object from projections. J. Theor. Biol., 36, 105-117.
  • Gürgey, K., Simoneit, B. R. T., Bati, Z., Karamanderesi, I. H., ve Varol, B., 2007. Origin of petroliferous bitumen from the Buyuk Menderes-Gediz geothermal graben system, Denizli-Saraykoy, western Turkey. Applied Geochemistry, 22, 1393–1415.
  • Hobro, J. W. D., Singh, S.C., Minshull, T.A., 2003. Three-Dimensional tomographic inversion of combined reflection and refraction seismic traveltime data. Geophysical Journal International, 152 (7), 79-93.
  • Hounsfield, G.N., 1972a. A method of and apparatus for examination of a body by radiation such as X-ray or gamma radiation. Patent Specification, 1283915.
  • Hounsfield, G.N., 1972b. Computerized traverse axial scanning (tomography) Part I: Description of system. British J. Radiology, 46, 1016-1022.
  • IOC, IHO ve BODC, 2003. "Centenary Edition of the GEBCO Digital Atlas", published on CDROM on behalf of the Intergovernmental Oceanographic Commission and the International Hydrographic Organization as part of the General Bathymetric Chart of the Oceans; British Oceanographic Data Centre, Liverpool.
  • Lauterbur, P. C., 1973. Image formation by induced local interactions: Examples employing nuclear magnetic resonance. Nature, 242, 190-191.
  • Mason, I.N., 1981. Algebraic Reconstruction of a two-dimensional velocity inhomogeneity in the High Hazles seam of Thoresby Colliery. Geophysics, 46, 298-308.
  • NASA’s Earth Observing System Data and Information System (EOSDIS), Copernicus Sentinel data [2018]. Retrieved from ASF DAAC [1.10.2018], processed by ESA.
  • Ocakoğlu, N., 2004. İzmir körfezi ve Alaçatı-Doğanbey-Kuşadası açıkları aktif tektoniğinin sismik yansıma verileri ile incelenmesi. Doktora Tezi, İstanbul Teknik Üniversitesi, İstanbul, Türkiye.
  • Ocakoğlu, N., Demirbağ, E., Kuşçu, İ., 2005. Neotectonic structures in İzmir Gulf and surrounding regions (western Turkey): Evidences of strike-slip faulting with compression in the Aegean extensional regime. Marine Geology, 219, 155-171.
  • Operto S., Ravaut C., Improta L., Virieux J., Herrero A. ve Dell’Aversana P., 2004. Quantitative imaging of complex structures from dense wide-aperture seismic data by multiscale traveltime and waveform inversions: a case study. Geophysical Prospecting, 52, 625-651.
  • QGIS Development Team (2018). QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org
  • Radon, J., 1917. Über die Bestimmung von Funktionen durch Integralwerte langsgewisser Manigfaltigkeiten. Ber.sachs. Akad der Wiss., 69, 262-277.
  • Rossi, G., Böhm, G., Madrussani, G., 2011. Tomographic inversion of ocean bottom seismograph (OBS) data: Problems and solutions applied to the NW Svalbard Hydratech data set. Computers & Geosciences, 37, 1535-1544.
  • Vesnaver, A., 1996. The contribution of reflected, refracted and transmitted waves to seismic tomography: a tutorial1. First Break, 14 (5), 159-168.
  • Vesnaver, A., Böhm, G., Madrussani, G., Rossi, G., Granser, H., 2000. Depth imaging and velocity calibration by 3D adaptive tomography. First Break, 18 (7), 303-312.
  • Vesnaver, A., Lovisa, L., Böhm, G., 2010. Joint 3D processing of active and passive seismic data. Geophys. Prospect., 58, 831–844.
  • Worthington, M. H., 1984. An introduction to geophysical tomography. First Break, 22, 20-26.
  • Zhang, H., Sarkar, S., Toksöz, N., Kuleli, H., Al-Kindy, F., 2009. Passive seismic tomography using induced seismicity at a petroleum field in Oman. Geophysics, 74(6), WCB57-WCB69.