İstanbul Avcılar Heyelanı Üzerinde VLF ve ERT Yer İletkenlik Modellerinin Kıyaslanması

VLF ve ERT yöntemleri, yerin ilk birkaç on metresindeki iletkenlik dağılımının araştırılmasında sıklıkla kullanılmaktadır. VLF yöntemi, hızlı ve düşük maliyetli ölçü alınmasına olanak sağlamaktadır, ancak, az sayıda ve nispeten dar bir frekans aralığında ölçü alınması, ERT yöntemine göre düşük derinlik çözünürlüğü sunmaktadır. Bu nedenle, ERT yöntemi, genelde önemli iletkenlik karşıtlıklarının görüldüğü heyelanlı ortamlarda en çok kullanılan yöntemler arasındadır. Heyelanlar üzerinde VLF verilerinin 2B ters çözüm sonuçlarının ne kadar başarılı sonuçlar sağladığının araştırılması için İstanbul Avcılar heyelanı üzerinde paralel iki hat üzerinde VLF-EM ve ERT ölçümleri gerçekleştirilmiştir. Ayrıca VLF-EM hattının Kuzeydoğu ucunda VLF-R verileri de toplanmıştır. Toplanan veriler, birbirinden bağımsız olarak 2B yuvarlatıcılı ters çözüm algoritmaları ile modellenmiş ve yorumlanmıştır. Sonuçlara göre, heyelan içerisindeki iletkenler ve kayma düzlemi, VLF yöntemi ile belirlenebilmiştir. Buna göre, kayma düzlemini teşkil eden Gürpınar formasyonunun iletken killeri 15-20m derinde tespit edilmiştir. VLF-EM yöntemi, yatay iletkenlik değişimlerin duyarlı olduğundan, yüzeyi kaplayan iletken alüvyon VLF-EM verileri ile belirlenememiştir. Çalışma alanının Kuzeydoğu bölümünde, Gürpınar formasyonunun killerinin yeryüzüne yaklaştığı hem ERT hem de VLF-EM yöntemi ile belirlenmiştir. Çalışma alanının Kuzeydoğu ucunda alüvyon örtü ve ~3-10m derindeki iletken killer VLF-EM modelinde birbirinden ayıramamıştır. Buna karşın, VLF-R ölçüleri ile daha yüksek düşey ayrımlılık elde edilebildiğinden, bu iletkenlerin başarılı bir şekilde birbirinden ayrılması mümkün olmuştur. 

Comparison of the VLF and ERT Geo-Electrical Models on the Avcılar Landslide (Istanbul, Turkey)

VLF and ERT methods are widely used for investigating the resistivity distribution in the first few ten meters of the earth. VLF method provides rapid and low-cost measurements; however, the low frequency count and the relatively narrow frequency band provide a lower depth of investigation, compared to that of the ERT method. Hence, ERT is amongst the most employed methods in the landslides areas where sharp resistivity contrasts are generally observed. To investigate the performance of the 2D inversion results of the VLF data on landslide areas, VLF-EM and ERT measurements are acquired on two parallel profiles. Besides, VLF-R measurements are performed on the northeastern end of the VLF-EM profile. The measured data are modeled and interpreted individually, using 2D smooth inversion algorithms. The results suggest that conductive zones and the sliding surface of the landslide are delineated using the VLF method. Accordingly, conductive clays of the Gürpınar formation, consisting of the sliding surface, are delineated between 15-20 m depth. Due to the sensitivity of the VLF-EM data to the horizontal conductivity differences, the conductive alluvium cover is not delineated from the VLF-EM data. In the northeastern part of the study area, clays of the Gürpınar formation are observed to be approaching to the surface, detected from both VLF-EM and ERT models. In the northeasternmost part of the study area, VLF-EM model failed to detect the alluvium cover separately from the conductive clays at ~3-10 m depth. However, due to the higher vertical resolution obtained from the VLF-R measurements, these conductors are successfully identified by the VLF-R model.

___

  • Alp, H., 2014. Evidence for active faults in Küçükçekmece lagoon (Marmara Sea, Turkey), inferred from high-resolution seismic data. Geo-Marine Letters. 34(5), 447-455.
  • Amatyakul, P., Vachiratienchai, C., & Siripunvaraporn, W., 2017. WSJointInv2D-MT-DCR: An efficient joint two-dimensional magnetotelluric and direct current resistivity inversion. Computers & Geosciences, 102, 100-108.
  • Ardali, A. S., Tezkan, B., & Gürer, A., 2018. On the Salt Water Intrusion into the Durusu Lake, Istanbul: A Joint Central Loop TEM And Multi-Electrode ERT Field Survey. Pure and Applied Geophysics, 175(8), 3037-3050.
  • Balkaya, Ç., Kalyoncuoğlu, Ü. Y., Özhanlı, M., Merter, G., Çakmak, O., & Talih Güven, I., 2018. Ground‐penetrating radar and electrical resistivity tomography studies in the biblical Pisidian Antioch city, southwest Anatolia. Archaeological Prospection, 25(4), 285-300.
  • Baranwal, V.C., Franke,A., Börner, R., & Spitzer, K., 2011. Unstructured grid based 2-D inversion of VLF data for models including topography. Journal of Applied Geophysics 75 (2011) 363–372
  • Bichler, A., Bobrowsky, P., Best, M., Douma, M., Hunter, J., Calvert, T., & Burns, R., 2004. Three-dimensional mapping of a landslide using a multi-geophysical approach: the Quesnel Forks landslide. Landslides, 1(1), 29-40.
  • Bozzo, E., Lombardo, S., & Merlanti, F., 1994. VLF prospecting: abservations about field experiments. Annals of Geophysics, 37(5 Sup.).
  • Bulgan. B., 2016. İ.Ü. Avcılar Kampüsü Heyelanının VLF Yöntemiyle Çalışılması. Lisans Bitirme Tezi, İstanbul Üniversitesi, Jeofizik Mühendisliği Bölümü, İstanbul, Türkiye.
  • Candansayar, M. E., & Başokur, A. T., 2001. Detecting small-scale targets by the 2D inversion of two-sided three-electrode data: application to an archaeological survey. Geophysical Prospecting, 49(1), 13-25.
  • Chambers, J., Ogilvy, R., Kuras, O., Cripps, J., & Meldrum, P., 2002. 3D electrical imaging of known targets at a controlled environmental test site. Environmental Geology, 41(6), 690-704.
  • Chambers, J. E., Wilkinson, P. B., Kuras, O., Ford, J. R., Gunn, D. A., Meldrum, P. I., Pennington, C.V.L., Weller, A.L., Hobbs, P.R.N. & Ogilvy, R. D., 2011. Three-dimensional geophysical anatomy of an active landslide in Lias Group mudrocks, Cleveland Basin, UK. Geomorphology, 125(4), 472-484.
  • Constable, S. C., Parker, R. L., & Constable, C. G., 1987. Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics, 52(3), 289-300.
  • Cosenza, P., Marmet, E., Rejiba, F., Cui, Y. J., Tabbagh, A., & Charlery, Y., 2006. Correlations between geotechnical and electrical data: A case study at Garchy in France. Journal of Applied Geophysics, 60(3-4), 165-178.
  • Dalgıç, S., 2004. Factors affecting the greater damage in the Avcılar area of Istanbul during the 17 August 1999 Izmit earthquake. Bulletin of Engineering Geology and the Environment. 63(3), 221-232.
  • Dalgıç, S., Turgut, M., & Kuşku, İ., 2010. Büyükçekmece ile Küçükçekmece arasındaki heyelanların oluşumunda hazırlayıcı ve tetikleyici parametrelerin değerlendirilmesi. Uygulamalı Yerbilimleri. 2, 56-73.
  • deGroot-Hedlin, C., & Constable, S., 1990. Occam’s inversion to generate smooth, two-dimensional models from magnetotelluric data. Geophysics, 55(12), 1613-1624.
  • Demirci, I., Erdoğan, E., & Candansayar, M. E., 2012. Two-dimensional inversion of direct current resistivity data incorporating topography by using finite difference techniques with triangle cells: Investigation of Kera fault zone in western Crete. Geophysics, 77(1), E67-E75.
  • Diao, F., Walter, T. R., Minati, F., Wang, R., Costantini, M., Ergintav, S., Xiong, X., & Prats-Iraola, P., 2016. Secondary fault activity of the North Anatolian Fault near Avcilar, southwest of Istanbul: Evidence from SAR interferometry observations. Remote Sensing. 8(10), 846.
  • Drahor, M.G., & Berge, M.A., 2006. Geophysical investigations of the Seferihisar geothermal area, Western Anatolia, Turkey. Geothermics, V.35 (2006), pp. 302-320
  • Drahor, M. G., 2019. Integrated Geophysical Investigations in Archaeological Sites: Case Studies from Turkey. In Archaeogeophysics (pp. 27-68). Springer, Cham.
  • Duman, T.Y., Keccer, M., Ateş, S., Emre, O., Gedik, İ., Karakaya, F., Durmaz, S., Olgun, S., Şahin, H., & Gökmenoğlu, O., 2004. İstanbul metropolü batısındaki (Küçükçekmece-Silivri-Çatalcayöresi) kentsel gelişme alanlarının yerbilim verileri. MTA, Özel yayın serisi-3. MTA, Ankara.
  • Ergintav, S., Demirbağ, E., Ediger, V., Saatçılar, R., İnan, S., Cankurtaranlar, A., Dikbaş, A.,& Baş, M., 2011. Structural framework of onshore and offshore Avcılar, Istanbul under the influence of the North Anatolian fault. Geophysical Journal International. 185(1), 93-105.
  • Fraser, D.C., 1969. Contouring of VLF-EM data, Geophysics , 34, 958-967
  • Giocoli, A., Galli, P., Giaccio, B., Lapenna, V., Messina, P., Peronace, E., Romano, G. & Piscitelli, S., 2011. Electrical resistivity tomography across the Paganica-San Demetrio fault system (L’Aquila 2009 earthquake). Bollettino di Geofisica Teorica ed Applicata, 52(3), 457-469.
  • Gökaşan, E., Gazioğlu, C., Alpar, B., Yücel, Z., Ersoy, Ş., Gündoğdu, O., Yaltırak, C., & Tok, B., 2001. Evidence of NW extension of the North Anatolian Fault Zone in the Marmara Sea: a new interpretation of the Marmara Sea (Izmit) earthquake on 17 August 1999. Geo-Marine Letters. 21(4), 183-199.
  • Göktürkler, G., Balkaya, Ç., & Erhan, Z., 2008. Geophysical investigation of a landslide: The Altındağ landslide site, İzmir (western Turkey). Journal of Applied Geophysics, 65(2), 84-96.
  • Gündoğdu, N. Y., Candansayar, M. E., & Genç, E., 2017. Rescue archaeology application: Investigation of Kuriki mound archaeological area (Batman, SE Turkey) by using direct current resistivity and magnetic methods. Journal of Environmental and Engineering Geophysics, 22(2), 177-189.
  • Gürer, A., Bayrak, M., Gürer, Ö.F., & Şahin, S.Y., 2008. Deliniation of Weathering in the C¸ atalca Granite Quarry with the Very Low Frequency (VLF) Electromagnetic Method.Pure appl. geophys. 165 (2008) 429–441
  • Gürer, A., Bayrak, M., & Gürer, Ö.F., 2009. A VLF survey using current gathering phenomena for tracing buried faults of Fethiye–Burdur Fault Zone, Turkey. Journal of Applied Geophysics, V68 (2009), pp. 437-447
  • Hamdan, H., Candansayar, E., Demirci, I., Economou, N., Andronikidis, N., Arslan, H., Soupios, P., & Vafidis, A., 2015. Imaging the saline/fresh water interface at Bafra, Samsum, Turkey using joint inversion of seismic refraction and direct current electricity data. In International Conference on Engineering Geophysics, Al Ain, United Arab Emirates, 15-18 November 2015 (pp. 232-235). Society of Exploration Geophysicists.
  • İBB, 2007. İstanbul Mikrobölgeleme Projesi Avrupa Yakası. İstanbul Büyükşehir Belediyesi (İBB), İstanbul.
  • Karous, M., & Hjelt, S.E., 1983. Linear filtering of VLF dip angle measurements, Geophysical Prospecting, 31, 782-794
  • Kaya, M.A., Özürlan, G., & Şengül, E., 2007. Delineation of soil and groundwater contamination using geophysical methods at a waste disposal site in Çanakkale, Turkey. Environ Monit Assess, 135 (2007), pp. 441-446
  • Kaya, T., Tank, S. B., Tunçer, M. K., Rokoityansky, I. I., Tolak, E., & Savchenko, T., 2009. Asperity along the North Anatolian Fault imaged by magnetotellurics at Düzce, Turkey. Earth, planets and space, 61(7), 871-884.
  • Lapenna, V., Lorenzo, P., Perrone, A., Piscitelli, S., Rizzo, E., & Sdao, F., 2005. 2D electrical resistivity imaging of some complex landslides in Lucanian Apennine chain, southern Italy. Geophysics, 70(3), B11-B18.
  • Lenti, L., Martino, S., & Musolino, G., 2016. Considering seismic coefficient distributions within slopes to calculate landslide reactivation probability. Bulletin of Engineering Geology and the Environment. 1-18.
  • Loke, M.H., 2012. Tutorial: 2-D and 3-D Electrical Imaging Surveys. Geotomo Software, Malaysia (2012)
  • Long, M., Donohue, S., L’Heureux, J. S., Solberg, I. L., Rønning, J. S., Limacher, R., O’Connor, P., Sauvin, G., Romoen, M., & Lecomte, I., 2012. Relationship between electrical resistivity and basic geotechnical parameters for marine clays. Canadian Geotechnical Journal, 49(10), 1158-1168.
  • Maślakowski, M., Kowalczyk, S., Mieszkowski, R., & Józefiak, K., 2014. Using Electrical Resistivity Tomography (ERT) as a tool in geotechnical investigation of the substrate of a highway. Studia Quaternaria, 31(2), 83-89.
  • Moisidi, M., Vallianatos, F., Soupios, P., & Kershaw, S., 2012. Spatial spectral variations of microtremors and electrical resistivity tomography surveys for fault determination in southwestern Crete, Greece. Journal of Geophysics and Engineering, 9(3), 261-270.
  • Monteiro Santos, F.A., Almeida, E.P., Gomes, M., & Pina, A. , 2006 a. Hydrogeological investigation in Santiago Island (Cabo Verde) using magnetotellurics and VLF methods,Journal of African Earth Sciences V.45 (2006), pp. 421–430
  • Monteiro Santos, F.A., Mateus, A., Figueiras, J., & Gonçalves, M.A., 2006 b. Mapping groundwater contamination around a landfill facility using the VLF-EM method — A case study. Journal of Applied Geophysics V.60 (2006), pp. 115–125
  • Nguyen, F., Garambois, S., Chardon, D., Hermitte, D., Bellier, O., & Jongmans, D., 2007. Subsurface electrical imaging of anisotropic formations affected by a slow active reverse fault, Provence, France. Journal of applied geophysics, 62(4), 338-353.
  • Olesen, O., Henkel, H., Lile, O.B., Mauring, E., & Ronning, J.S., 1992. Geophysical inverstigations of the Stuoragurra postglacial fault, Finnmark, northern Norway. Journal of Applied Geophysics., V29.(1992), pp.95-118
  • Özaydın, S., Tank, S. B., & Karaş, M., 2018. Electrical resistivity structure at the North-Central Turkey inferred from three-dimensional magnetotellurics. Earth, Planets and Space, 70(1), 49.
  • Sasaki, Y., 1989. Two-dimensional joint inversion of magnetotelluric and dipole-dipole resistivity data. Geophysics, 54(2), 254-262.
  • Shan, C., Bastani, M., Malehmir, A., Persson, L., & Lundberg, E., 2016. Integration of controlled-source and radiomagnetotellurics, electric resistivity tomography, and reflection seismics to delineate 3D structures of a quick-claylandslide site in southwest of Sweden. Geophysics, 81(1), B13-B29.
  • Singh, A., & Sharma, S. P., 2015. Fast imaging of subsurface conductors using very low frequency electromagnetic data. Geophysical Prospecting, 63(6), 1355-1370.
  • Sudha, K., Israil, M., Mittal, S., & Rai, J., 2009. Soil characterization using electrical resistivity tomography and geotechnical investigations. Journal of Applied Geophysics, 67(1), 74-79.
  • Şen, Ş., 2007. A fault zone cause of large amplification and damage in Avcılar (west of Istanbul) during 1999 Izmit earthquake. Natural Hazards. 43(3), 351-363.
  • Tank, S. B., Honkura, Y., Ogawa, Y., Matsushima, M., Oshiman, N., Tunçer, M. K., Çelik, C., Tolak, E., & Işıkara, A. M., 2005. Magnetotelluric imaging of the fault rupture area of the 1999 Izmit (Turkey) earthquake. Physics of the Earth and Planetary Interiors, 150(1-3), 213-225.
  • Türkoğlu, E., 2003. Geçici elektromanyetik ve doğru akım elektrik özdirenç verilerinin ortak ters çözümü: Avcılar örneği. Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü.
  • Vafidis, A., Soupios, P., Economou, N., Hamdan, H., Andronikidis, N., Kritikakis, G., Panagopoulos, G., Manoutsoglou, E., Steiakakis, M., Candansayar, E., & Schafmeister, M., 2014. Seawater intrusion imaging at Tybaki, Crete, using geophysical data and joint inversion of electrical and seismic data. first break, 32(8), 107-114.
  • Yamaguchi, S., Murakami, S., & Inokuchi, H., 2001. Resistivity mapping using the VLF-MT method around surface fault ruptures of the 1995 Hyogo-ken Nanbu earthquake, Japan,The Island Arc V10 (2001), 296–305
  • Yüzer, E., & Eyüboğlu, R., 1998. Kentsel yerleşim planlamasında genelleştirilmiş bir mühendislik jeolojisi yaklaşımı (Avcılar-İstanbul). Kentleşme ve Jeoloji Sempozyumu. Uluslararası Mühendilik Jeolojisi Türk Milli Komitesi TMMOB Jeoloji Mühendisleri Odası İstanbul Şubesi Avcılar Belediye Başkanlığı, İstanbul. 233-248.
  • Zarif, H., 1996. Küçükçekmece-Büyükçekmece arasındaki alanın yamaç stabilitesi. Doktora Tezi, İstanbul Üniversitesi, Fen Bilimleri Enstitüsü.
  • Zhu, T., Feng, R., Hao, J. Q., Zhou, J. G., Wang, H. L., & Wang, S. Q., 2009. The application of electrical resistivity tomography to detecting a buried fault: a case study. Journal of Environmental & Engineering Geophysics, 14(3), 145-151.