Mineralogy of the Kraubath-type magnesite deposits of the Khuzdar area, Balochistan, Pakistan

Khuzdar Bölgesi (Belucistan, Pakistan)’ndeki manyezit yataklarının mineralojisi X-ışınları kırınım tekniğiyle araştırılmıştır. Kraubath tipi bu manyezit yatakları, Kretase yaşlı Bela ofiyolitleriyle ilişkili serpantinleşmiş harzburjitler içinde yer almaktadır. Bu çökeller, kriptokristalin damarlar ve botriyodal ve kemiksi. özelliklere sahip ağsı yatak şeklinde oluşmuşlardır. Bela ofiyolitik kayaçları serpantinleşmeye maruz kalmışlardır. Hidrotermal akışkanlarca taşınan Mg, Ca, Fe ve serpantinleşmiş kayalardan gelen diğer elementler ve sonuçta bu iyonların karbonatlaşması, bunların hidroksitlerinin oluşumuyla ve farklı bileşimlerdeki karbonatların bu çökelleri oluşturmasıyla sonuçlanmıştır. Cevherlerin X-ışınları kırınım analizleri; artinit, brusit, huntit, Fe-manyezit, dolomit, kalsit ve Mg-kalistle ilişkili yüksek manyezit içeriğinin varlığını göstermektedir. İlk olarak, düşük sıcaklıkta ve düşük kısmi karbondioksit ($PCO_2$) basıncı altında, tedricen duraylı manyezit fazına dönüşen yarı-duraylı hidroksitler ve karbonatlar oluşmuştur. Yabancı minerallerin azlığı, göreceli olarak yüksek sıcaklık koşullarına ve yarı-duraylı mineralleri manyezit fazına dönüştüren $PCO_2$’ye işaret etmektedir. Bu çalışma, artan sıcaklığı ve arinit, hidromanyezit, huntit, dolomitten itibaren brusitten $PCO_2$ artışını göstermiştir. Ayrıca asal bileşen analizi (PCA) ve korelasyon matriksi analizi bu mineraller arasında mevcut olan kökensel ilişknin araştırılmasıi için kullanılmıştır.

Khuzdar Bölgesi (Beluchistan, Pakistan)'ndeki Kraubath tipi manyezit yataklarının mineralojisi

Mineralogical studies of the magnesite deposits in the Khuzdar District, Balochistan, Pakistan were made using the Xray diffraction (XRD) technique. These Kraubath-type magnesite deposits are hosted within serpentinized harzburgites, associated with Bela Ophiolite of Cretaceous age. The deposits occur as cryptocrystalline veins of stockwork-type, possessing botryoidal and bone habits. The ultramafic rocks of Bela Ophiolite were subjected to serpentinization. The hydrothermal fluids leached out Mg, Ca, Fe and other elements from the serpentinized rocks and finally carbonation of these ions resulted in the formation of their hydroxides and carbonates of different combinations to produce these deposits. The XRD analysis of the ores revealed a high magnesite content in association with artinite, brucite, huntite, Femagnesite, dolomite, calcite and Mg-calcite. Initially, at low temperatures and low partial pressure from carbon dioxide (PCO2), metastable hydroxides and carbonates are formed, and these are gradually converted into a stable magnesite phase. The low abundance of allied minerals reflects the relatively high temperature conditions and $PCO_2$ that convert metastable minerals into their stable magnesite phase. The study revealed an increasing temperature and $PCO_2$ from brucite through artinite, hydromagnesite, huntite, and dolomite to magnesite. Principal component analysis (PCA) and correlation matrix analysis were also utilized to reveal the genetic affiliation that existed between these minerals.

___

  • Bashir, E., 2008. Geology and geochemistry of magnesite ore deposits of Khuzdar area, Balochistan. PhD Thesis, University of Karachi, Karachi, Pakistan (unpublished).
  • Bashir, E., Naseem, S., Naseem, S., Sheikh, S.A., and Shirin, K., 2004. Petrography, mineralogy and geochemistry of Baran Lak magnesite and associated rocks, Khuzdar, Balochistan, Pakistan. Geological Bulletin University of Peshawar, 37, 155-166.
  • Botha, A., and Strydom, C.A., 2001. Preparation of a magnesium hydroxy carbonate from magnesium hydroxide. Hydrometallurgy, 62, 175-183.
  • Canaveras, J.C., Sanchez-Moral, S., Sanz- Rubio, E., and Hoyos, M., 1998. Meteoric calcitization of magnesite in Miocene lacustrine deposits (Calatayud basin, NE Spain). Sedimentary Geology, 119,183-194.
  • Canterford, J.H., Tsambourakis, G., and Lambert, B., 1984. Some observations on the properties of dypingite, Mg5(CO3)4(OH)2·5H2O, and related minerals. Mineralogical Magazine, 48, 437-442.
  • Chen, G., and Tao, D., 2004. Effect of solution chemistry on floatability of magnesite and dolomite. International Journal of Mineral Processing, 74, 343-357.
  • Davies, P.J., Bubela, B., and Ferguson, J., 1977. Simulation of carbonate diagenetic processes: formation of dolomite, huntite and monohydrocalcite by the reactions between nesquehonite and brine. Chemical Geology, 19, 187-214.
  • Deelman, J.C., 2003. Low-temperature formation of dolomite and magnesite. Compact Disc Publications, Geology Series, Eindhoven.
  • Deer, W.R., Howie, R.A., and Zussman, J., 1992. An Introduction to the Rock-Forming Minerals. Longman, Essex, U.K.
  • Demir, F., and Dönmez, B., 2008. Optimization of the dissolution of magnesite in citric acid solutions. International Journal of Mineral Processing, 87, 60-64.
  • Dollase, W.A., and Reeder, R.J., 1986. Crystal structure refinement of huntite, CaMg3(CO3)4, with X-ray powder data. American Mineralogist, 71, 163-166.
  • Frost, R.L., Bahfenne, S., Graham, J., and Martens, W.N., 2008. Thermal stability of artinite, dypingite and brugnatellite— Implications for the geosequestration of green house gases. Thermochimica Acta, 475(1-2), 39-43.
  • Gartzos, E., 2004, Comparative stable isotopes study of the magnesite deposits of Greece. Bulletin of the Geological Society of Greece, 36, 196-203.
  • Haurie, L., Fernandez, A.I., Velasco, J.I., Chimenos, J.M., Lopez-Cuesta, J.M., and Espiell, F., 2007. Effects of milling on the thermal stability of synthetic hydromagnesite. Materials Research Bulletin, 42(6), 1010-1018.
  • Hora, Z.D., 1998. Ultramafic-hosted chrysotile asbestos, in geological fieldwork 1997. British Columbia Ministry of Employment and Investment, Paper 1998-1, pp. 24K-1 to 24K-4.
  • Horstetler, P.B., Coleman, R.G., and Evans, B.W., 1996. Brucite in alpine serpentinites. American Mineralogist, 51, 75-98.
  • Kangal, O., and Güney, A., 2006. A new industrial mineral: Huntite and its recovery. Minerals Engineering, 19, 376-378.
  • Khan, M., Kerr, A.C., and Mahmood, K., 2007, Formation and tectonic evolution of the Cretaceous–Jurassic Muslim Bagh ophiolitic complex, Pakistan: Implications for the composite tectonic setting of ophiolites. Journal of Asian Earth Sciences, 31,112-127.
  • Khan, N., Dollimore, D., Alexander, K., and Wilburn, F.W., 2001. The origin of the exothermic peak in the thermal decomposition of basic magnesium carbonate. Thermochimica Acta, 367, 321-333.
  • Laçin, O., Dönmez, B., and Demir, F., 2005. Dis- solution kinetics of natural magnesite in acetic acid solutions. International Journal of Mineral Processing, 75, 91-99.
  • Lippmann, F., 1973. Sedimentary Carbonate Minerals. Springer-Verlag, New York.
  • Liu, K., Cheng, H., and Zhow, J., 2004. Investigation of brucite-fiber-reinforced concrete. Cement and Concrete Research, 34, 1981-1986.
  • Möller, P. (ed.), 1989. Magnesites. Monograph Ser. Mineral Deposits 28, Gebr. Borntrdger, Berlin-Stuttgart.
  • Miyashiro, A., 1994. Metamorphic Petrology. GRS Press.
  • Okada, T., Utsumi, W., Kaneko, H., Yamakata, M., and Shimomura, O., 2002. In-situ X-ray observations of the decomposition of brucite and the graphite-diamond conversion in aqueous fluid at high pressure and temperature. Physics and Chemistry of Minerals, 29, 439-445.
  • Papenguth, H.W., Krumhans, J.L., Bynum, R.V., Wang, Y., Kelly, J.W., Anderson, H.A., and Nowak, E.J., 2000. Status of research on magnesium oxide backfill. 23p.http://www.osti.gov/bridge/servlets/ purl/760032-7sCKZ/webviewable/ 760032.pdf.
  • Pohl, W., and Siegl, W., 1986. Sediment-hosted magnesite deposits. In: K.H. Wolf (ed.), Handbook of Stratabound and Stratiform Ore Deposits, Elsevier, Amsterdam, 14, pp. 223-310.
  • Ross, M., and Nolan, R.P., 2003. History of asbestos discovery and use and asbestosrelated disease in context with the occurrence of asbestos within ophiolite complexes. Geological Society of America, Special Paper, 273, 447-470.
  • Sasvári, T., and Kondela, J., 2007. Demonstration of Alpine structural phenomena at the structure of magnesite deposit Jelšava - Dúbrava Massif. Metalugija, 46(2), 117-122.
  • Sawada, Y., Yamaguchi, J., Sakurai, O., Uematsu, K., Mizutani, N., and Kato, M., 1979. Thermal decomposition of basic magnesium carbonates under highpressure gas atmosphere. Thermochimica Acta, 32(1-2), 277-291.
  • Schroll, E., 2002. Genesis of magnesite deposits in the view of isotope geochemistry. Boletim Paranaense de Geociências, 50, 59-68.
  • Sheth, H.C., 2008, Do major oxide tectonic discrimination diagrams work? Evaluating new log-ratio and discriminantanalysis- based diagrams with Indian Ocean mafic volcanics and Asian ophiolites. Terra Nova, 20, 229-236.
  • Simandl, G.J., Paradis, S., and Irvine, M., 2007. Brucite-the mineral of the future. Geoscience Canada, 34(2), 57.
  • Simandl, G.J., Simandl, J., and Debreceni, A., 2001. Hydromagnesite-magnesite resources: potential flame retardant material. British Columbia Ministry of Energy and Mines, 327-336.
  • Stamatakis, M.G., 1995. Occurrence and genesis of huntite-hydromagnesite assemblages, Kozani basin, Greece-important new white fillers and extenders. Applied Earth Science, 104, B179-B210.
  • Wilson, S.A., Dipple, G.M., Power, I.M., Thom, J.M., Anderson, R.G., Raudsepp, M., Gabites, J.E., and Southam, G., 2009. Carbon dioxide fixation within mine wastes of ultramafic-hosted ore deposits: Examples from the Clinton Creek and Cassiar chrysotile deposits, Canada. Economic Geology, 104(1), 95-112.
  • Yalçın, H., and Bozkaya, Ö., 2004. Ultramaficrock- hosted vein sepiolite occurrences in the Ankara Ophiolitic Melange, Central Anatolia, Turkey. Clays and Clay Minerals, 52(2), 227-239.
  • Zedef, V., Russell, M.J., Fallick, A.E., and Hall, A.J., 2000. Genesis of vein stockwork and sedimentary magnesite and hydromagnesite deposits in the ultramafic terranes of southwestern Turkey: A stable isotope study. Economic Geology, 95, 429-446.
Yerbilimleri-Cover
  • ISSN: 1301-2894
  • Başlangıç: 1976
  • Yayıncı: Hacettepe Üniversitesi Yerbilimleri Uygulama ve Araştırma Merkezi
Sayıdaki Diğer Makaleler

Mineralogy of the Kraubath-type magnesite deposits of the Khuzdar area, Balochistan, Pakistan

Erum BASHIR, Shahid NASEEM, Shamim Ahmed SHEIKH, Maria KALEEM

L’Aquıla (İtalya) depreminin özellikleri ve deprem bilimi ve mühendisliği açısından önemi

Ömer AYDAN, Halil KUMSAR, Selçuk TOPRAK

The 2009 L'Aquila earthquake (Italy): Its characteristics and implications for earthquake science and earthquake engineering

Halil KUMSAR, Selçuk TOPRAK, Ömer AYDAN

Khuzdar Bölgesi (Belucistan, Pakistan)’ndeki Kraubath tipi manyezit yataklarının mineralojisi

Erum BASHIR, Shahid NASEEM, Shamim Ahmed SHEIKH, Maria KALEEM

KB Anadolu'daki Karakaya Karmaşığı birimlerinin diyajenezi-düşük dereceli metamorfizması

SEMA TETİKER, HÜSEYİN YALÇIN, ÖMER BOZKAYA

The 2009 L'Aquila earthquake (Italy): Its characteristics and implications for earthquake science and earthquake engineering

Ömer AYDAN, HALİL KUMSAR, SELÇUK TOPRAK

KB Anadolu’daki Karakaya Karmaşığı birimlerinin diyajenezi-düşük dereceli metamorfizması

Sema TETİKER, Hüseyin YALÇIN, Ömer BOZKAYA

Patlamayan-kabaran malzemenin içsel basıncı altındaki komşu dairesel iki delik arasındaki gerilme konsantrasyonunun analizi

Shobeir ARSHADNEJAD, Kamran GOSHTASBI, Jamshid AGHAZADEH

Akveren Formasyonu'nun Kampaniyen-Maastrihtiyen planktonik foraminifer biyostratigrafisi (Bartın, Batı Karadeniz)

CANER KAYA ÖZER, Vedia TOKER

Karakaya Karmaşığı içerisindeki bazik volkanitlerin jeokimyasal özelliklerinin yeniden değerlendirilmesi

KAAN SAYIT, M. Cemal GÖNCÜOĞLU