A discussion on the Hoek-Brown failure criterion and suggested modifications to the criterion verified by slope stability case studies

Yakın aralıklı eklemlerle bölünmüş kaya kütlelerinin mekanik davranışının tahmini, laboratuvar deneyleri için gerekli olan örnek boyutlarının büyük olması nedeniyle kaya mekaniğinin temel sorunlarından biridir. Kaya malzemeleri ve kaya kütleleri için önerilmiş olan görgül (ampirik) yenilme ölçütleri arasında yer alan Hoek-Brown ölçütü oldukça popüler olmuştur. Ölçüt, özellikle zayıf kaya kütlelerine uygulanmasıyla ilgili bazı sınırlamaları nedeniyle, ilk kez önerildiği 1980'den bu yana farklı zamanlarda tekrar düzenlenmiş ve genişletilmiştir. 1997 yılında Jeolojik Dayanım İndeksi (GSI), kaya kütlesinde ölçek etkisini dikkate alan bir parametre olarak geliştiricileri tarafından ölçüte dahil edilmiştir. Ayrıca GSI'nın daha niceliksel şekilde belirlenebilmesi ve GSI ile ilgili girdi parametrelerinin tahmininde kullanılabilecek yöntemler konusunda 1999 yılında bu makalenin yazarları tarafından mevcut GSI Sistemi'ne yönelik bazı değişiklikler önerilmiştir. Bununla birlikte yazarlar, GSI değeri 25 ve 26 olan kaya kütlelerinin yenilme zarfları arasında ortaya çıkan bir dayanım boşluğu, belirli bir normal gerilme düzeyinde yüksek ve düşük dayanımlı kaya kütielerinin yenilme zarflarının birbirlerini kesmesi ve GSI

Hoek-Brown yenilme ölçütü üzerine bir tartışma ve şev duraylılığı vakaları ile sınanmış ölçüte ilişkin değişiklik önerileri

Estimation of the mechanical behavior of closely jointed rock masses is one of the fundamental problems in rock mechanics since the size of representative specimens is too large for laboratory testing. Among the empirical strength criteria suggested for intact rocks and rock masses, the Hoek-Brown criterion has become highly popular. Since its introduction in 1980, the criterion has been refined and expanded over the years, particularly due to some limitations in its application to poor-very poor quality rock masses. In 199,7 the Geological Strength Index (GSI) was introduced into the criterion by its originators as a scaling parameter. In addition, some modifications to the GSI System to provide a more quantitative estimate of GSI and methods of parameter estimation have also been previously suggested by the authors,of this paper in 1999. However, the authors considered that some improvements seem to be necessary in order to avoid the gap between failure envelopes of the rock masses with the GSI values between 25 and 26, intersection between failure envelopes of the rock masses of high and low strengths at a certain-normal stress level, and a uniaxial compressive strength of zero when s=0 for GSI

___

  • Balmer, G., 1952. A general analytical solution for Mohr's envelope. American Society for Testing Materials (52), 1269-1271.
  • Bieniawski, Z.T., 1989. Engineering Rock Mass Classifications. Wiley, New York, 215 pp.
  • Bishop, A.W., 1955. The use of slip circle in the stability analysis of earth slopes. Geotechnique, 5 (2), 7-17.
  • Gerçek, H., 1996. Evolution of the Hoek-Brown failure criterion. Proceedings of the Third National Rock Mechanics Symposium, Ankara, Turkey, 251-262 (in Turkish).
  • Gerçek, H., 2001. Personnel communication. Mining Engineering Department of Karaelmas University, Zonguldak, Turkey.
  • Hoek, E., 1983. Strength of jointed rock masses, 1983 Rankine Lecture. Geotechnique, 33 (3), 187-223.
  • Hoek, E., 1994. Strength of rock and rock masses. ISRM News Journal, 2 (2), 4-16.
  • Hoek, E., 1998, Reliability of the Hoek-Brown estimates of rock mass properties and their impact on design. International Journal of Rock Mechanics and Mining Sciences, 35 (1), 63-68.
  • Hoek, E., 1999a. Putting numbers to geologyan engineer's view point. Quarterly Journal of Engineering Geology, 32, 1-19.
  • Hoek, E., 1999b, Rock engineering-course notes. (http://www.rockscience.com/Hoekcorner. htm; March 8, 1999).
  • Hoek, E., and Brown, E.T., 1980.Underground Excavations in Rock. The Institution of Mining Metallurgy, London, 527 pp.
  • Hoek, E., and Brown, E.T,.1988. The Hoek-Brown failure criterion - a 1988 update. Proceedings of the Fifteenth Canadian Rock Mechanics Symposium, University of Toronto, 31-38.
  • Hoek, E., and Brown, E.T., 1997. Practical estimates of rock mass strength. International Journal of Rock Mechanics and Mining Sciences, 34 (8), 1165-1186.
  • Hoek, E., Wood. D., and Shah, S., 1992. A modified Hoek-Brown criterion for jointed rock masses. Proceedings ISRM Symposium: Eu-rock'92, Thomas Telford, 209-213.
  • Hoek, E., Kaiser, P.K., and Bawden W.F, 1995. Support of Underground Excavations in Hard Rock. A.A. Balkema, Rotterdam, 214 pp.
  • Hoek, E., Marinos, P., and Benissi, M., 1998. Applicability of the geological strength index (GSI) classification for very weak and sheared rock masses: the case of the Athens schist formation. Bulletin of Engineering Geology and the Environment, 57, 151-160.
  • Hoek, E., Carranza -Torres, C.T., and Corkum, B., 2002. Hoek-Brown failure criterion:2002 edition. Proceedings of the North American Rock Mechanics Society Meeting, Toronto, Canada, 1-6.
  • Janbu, N., 1973. Slope stability computation. In : R.C., Hirschfield, and S.J., Paulos, (eds.). Embankment Dam Engineering: Cassag-rande Memorial Volume. Wiley, New York, 47-87.
  • Kendorski, F.S., Cumming, R.A., Bieniawski, Z.T., and Skinner, E.H., 1983. Rock mass classification for block caving mine drift support. Proceedings of the Fifteenth International Congress on Rock Mechanics, Melbourne, Australia, B51-B63.
  • Laubscher, D.H., 1990. A geomechanics classification system for the rating of rock mass in mine design. Journal of the South African Institute Mining and Metallurgy 90(10), 257-273.
  • Marinos, P., and Hoek, E., 2000. A geologically friendly tool for rock mass strength estimation.. Proceedings of the International Conference on Geotechnical and Geological Engineering (GeoEng2000), Melbourne, Australia, Technamic Publishing Co. Inc., 1422-1440.
  • Marinos, P., and Hoek, E., 2001. Estimating the ge-otechnical properties of heterogeneous rock masses such as flysch. Bulletin of Engineering Geolology and the Environment, 60, 85-92
  • Sönmez, H., and Ulusay. R., 1999. Modifications to the geological strength index (GSI) and their applicability to stability of slopes. International Journal of Rock Mechanics and Mining Sciences, (36), 743-760.
  • Sönmez, H., Ulusay, R., and Gökçeoğlu, C., 1997, A practical procedure for back analysis of slope failures in closely jointed rock masses. International Journal of Rock Mechanics and Mining Sciences, 35 (2), 219-233.
  • Ulusay, R., and Yücel, Z., 1989. An example for the stability of slopes excavated in weak rocks: Başkoyak Barite Open Pit. Earthsciences (Bulletin of Earth Sciences Application and Research Center of Hacettepe University), 15 (2),15-27 (in Turkish).
  • Ulusay,R., Arıkan, F., Yoleri, M.F., and Çağlan, D., 1995a. Engineering geological characterization of coal mine waste material and an evaluation in the context of back-analysis of spoil pile instabilities in a strip mine, SW Turkey. Engineering Geology, 40, 77-101.
  • Ulusay, R., Yoleri, M.F., Çağlan, D., and Arıkan, F., 1995b. Design evaluations for spoil piles at a strip coal mine considering safety of the haul road. International Journal of Surface Mining, Reclamation and Environment, 9, 133-140.
  • Ulusay, R., Çağlan, D., Arıkan, F., and Yoleri, M.F., 1996. Characteristics of biplanar wedge spoil pile instabilities and methods to improve stability. Canadian Geotechnical Journal, 33 (1), 58-79.
  • Ulusay, R., Ekmekci, M., Gökçeoğlu, C., Sönmez, H., Tuncay, E., and Erdoğan, S., 1998. Slope stability investigation for Himmetoğlu lignite open pit mine. Hacettepe University, Project Report No.: 97-0058, 245 pp (in Turkish).