YÜZ DEFEKTLERİNİN REHABİLİTASYONUNDA KULLANILAN GÜNCEL TEKNİKLER

Bu derlemede, çene-yüz protezlerinin üretiminde güncel tekniklerin uygulama aşamalarının araştırılmasına odaklanılmıştır. Bilgisayar destekli tasarım ve üretimin diş hekimliğinde uygulama alanları son yıllarda oldukça genişleme kaydetmiştir. Derleme, dijital ölçü alımı, sanal ortamda modelleme ve tasarım ile birlikte hızlı prototipleme üretim tekniklerinin bir özeti olarak düzenlenmiştir.

___

  • 1. Diken Türksayar AA, Saglam SA, Bulut AC. Retention systems used in maxillofacial prostheses: A review. Niger J Clin Pract. 2019;22(12):1629- 34. doi: 10.4103/njcp.njcp_92_19. PubMed PMID: 31793467.
  • 2. Nyberg EL, Farris AL, Hung BP, Dias M, Garcia JR, Dorafshar AH, et al. 3D-Printing Technologies for Craniofacial Rehabilitation, Reconstruction, and Regeneration. Annals of Biomedical Engineering. 2017;45(1):45-57. doi: 10.1007/s10439-016-1668-5.
  • 3. Tetteh S, Bibb RJ, Martin SJ. Maxillofacial prostheses challenges in resource constrained regions. Disabil Rehabil. 2019;41(3):348-56. Epub 20171024. doi: 10.1080/09638288.2017.1390697. PubMed PMID: 29065718.
  • 4. Bachelet JT, Jouan R, Prade V, Francisco C, Jaby P, Gleizal A. Place of 3D printing in facial epithesis. J Stomatol Oral Maxillofac Surg. 2017;118(4):224-7. Epub 20170619. doi: 10.1016/j.jormas.2017.05.008. PubMed PMID: 28642185.
  • 5. Egelhoff K, Idzi P, Bargiel J, Wyszyńska-Pawelec G, Zapała J, Gontarz M. Implementation of Cone Beam Computed Tomography, Digital Sculpting and Three-Dimensional Printing in Facial Epithesis—A Technical Note. Applied Sciences. 2022;12(23):11974. PubMed PMID: doi:10.3390/ app122311974.
  • 6. Eggbeer D, Bibb R, Evans P, Ji L. Evaluation of direct and indirect additive manufacture of maxillofacial prostheses. Proc Inst Mech Eng H. 2012;226(9):718-28. doi: 10.1177/0954411912451826. PubMed PMID: 23025173.
  • 7. Antonacci D, Caponio VCA, Troiano G, Pompeo MG, Gianfreda F, Canullo L. Facial scanning technologies in the era of digital workflow: A systematic review and network meta-analysis. J Prosthodont Res. 2022. Epub 20220903. doi: 10.2186/jpr.JPR_D_22_00107. PubMed PMID: 36058870.
  • 8. Hong C, Choi K, Kachroo Y, Kwon T, Nguyen A, McComb R, et al. Evaluation of the 3dMDface system as a tool for soft tissue analysis. Orthodontics & Craniofacial Research. 2017;20(S1):119-24. doi: https://doi.org/10.1111/ ocr.12178.
  • 9. Kim AJ, Gu D, Chandiramani R, Linjawi I, Deutsch ICK, Allareddy V, et al. Accuracy and reliability of digital craniofacial measurements using a small-format, handheld 3D camera. Orthod Craniofac Res. 2018. Epub 20180604. doi: 10.1111/ocr.12228. PubMed PMID: 29863289.
  • 10. Camison L, Bykowski M, Lee WW, Carlson JC, Roosenboom J, Goldstein JA, et al. Validation of the Vectra H1 portable three-dimensional photogrammetry system for facial imaging. Int J Oral Maxillofac Surg. 2018;47(3):403-10. Epub 20170914. doi: 10.1016/j.ijom.2017.08.008. Pub- Med PMID: 28919165; PubMed Central PMCID: PMC5803347.
  • 11. Gibelli D, Pucciarelli V, Cappella A, Dolci C, Sforza C. Are Portable Stereophotogrammetric Devices Reliable in Facial Imaging? A Validation Study of VECTRA H1 Device. J Oral Maxillofac Surg. 2018;76(8):1772-84. Epub 20180131. doi: 10.1016/j.joms.2018.01.021. PubMed PMID: 29458028.
  • 12. Mai HN, Lee DH. Effects of Artificial Extraoral Markers on Accuracy of Three-Dimensional Dentofacial Image Integration: Smartphone Face Scan versus Stereophotogrammetry. J Pers Med. 2022;12(3). Epub 20220318. doi: 10.3390/jpm12030490. PubMed PMID: 35330489; PubMed Central PMCID: PMC8951552.
  • 13. Joe PS, Ito Y, Shih AM, Oestenstad RK, Lungu CT. Comparison of a Novel Surface Laser Scanning Anthropometric Technique to Traditional Methods for Facial Parameter Measurements. Journal of Occupational and Environmental Hygiene. 2012;9(2):81-8. doi: 10.1080/15459624.2011.640557.
  • 14. Kovacs L, Zimmermann A, Brockmann G, Gühring M, Baurecht H, Papadopulos NA, et al. Three-dimensional recording of the human face with a 3D laser scanner. J Plast Reconstr Aesthet Surg. 2006;59(11):1193- 202. Epub 20060309. doi: 10.1016/j.bjps.2005.10.025. PubMed PMID: 17046629.
  • 15. Lee JD, Nguyen O, Lin Y-C, Luu D, Kim S, Amini A, et al. Facial Scanners in Dentistry: An Overview. Prosthesis. 2022;4(4):664-78. PubMed PMID: doi:10.3390/prosthesis4040053.
  • 16. Coward TJ, Watson RM, Wilkinson IC. Fabrication of a wax ear by rapid- process modeling using stereolithography. Int J Prosthodont. 1999;12(1):20-7. PubMed PMID: 10196824.
  • 17. Cristache CM, Tudor I, Moraru L, Cristache G, Lanza A, Burlibasa M. Digital Workflow in Maxillofacial Prosthodontics—An Update on Defect Data Acquisition, Editing and Design Using Open-Source and Commercial Available Software. Applied Sciences. 2021;11(3):973. PubMed PMID: doi:10.3390/app11030973.
  • 18. Bangeas P, Drevelegas K, Agorastou C, Tzounis L, Chorti A, Paramythiotis D, et al. Three-dimensional printing as an educational tool in colorectal surgery. FBE. 2019;11(1):29-37. doi: 10.2741/e844.
  • 19. Shahrubudin N, Lee TC, Ramlan R. An Overview on 3D Printing Technology: Technological, Materials, and Applications. Procedia Manufacturing. 2019;35:1286-96. doi: https://doi.org/10.1016/j. promfg.2019.06.089.
  • 20. Kafle A, Luis E, Silwal R, Pan HM, Shrestha PL, Bastola AK. 3D/4D Printing of Polymers: Fused Deposition Modelling (FDM), Selective Laser Sintering (SLS), and Stereolithography (SLA). Polymers (Basel). 2021;13(18). Epub 20210915. doi: 10.3390/polym13183101. PubMed PMID: 34578002; PubMed Central PMCID: PMC8470301.
  • 21.https://www.lboro.ac.uk/research/amrg/about/the7categoriesofadditivemanufacturing/ materialextrusion/.
  • 22. Yap CY, Chua CK, Dong ZL, Liu ZH, Zhang DQ, Loh LE, et al. Review of selective laser melting: Materials and applications. Applied Physics Reviews. 2015;2(4):041101. doi: 10.1063/1.4935926.
  • 23. Song X, Zhai W, Huang R, Fu J, Fu MW, Li F. Metal-based 3D-printed micro parts & structures. 2022.
  • 24. SLM – SELECTIVE LASER MELTING. https://www.materflow.com/en/ slm-selective-laser-melting-2/.
  • 25. Sun J, Zhang FQ. The application of rapid prototyping in prosthodontics. J Prosthodont. 2012;21(8):641-4. Epub 20120723. doi: 10.1111/j.1532- 849X.2012.00888.x. PubMed PMID: 22823471.
  • 26. www.liqcreate.com.
  • 27. Bagheri A, Jin J. Photopolymerization in 3D Printing. ACS Applied Polymer Materials. 2019;1(4):593-611. doi: 10.1021/acsapm.8b00165.
  • 28. Msallem B, Sharma N, Cao S, Halbeisen FS, Zeilhofer HF, Thieringer FM. Evaluation of the Dimensional Accuracy of 3D-Printed Anatomical Mandibular Models Using FFF, SLA, SLS, MJ, and BJ Printing Technology. J Clin Med. 2020;9(3). Epub 20200317. doi: 10.3390/ jcm9030817. PubMed PMID: 32192099; PubMed Central PMCID: PMC7141211.
  • 29. Juneja M, Chawla J, Dhingra G, Bansal I, Sharma S, Goyal P, et al. Analysis of additive manufacturing techniques used for maxillofacial corrective surgeries. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2022;236(14):7864-75. doi: 10.1177/09544062221081992.
  • 30. Udroiu R, Braga I. Polyjet technology applications for rapid tooling. MATEC Web of Conferences. 2017;112:03011. doi: 10.1051/matecconf/ 201711203011.
  • 31. Lu Y, Mapili G, Suhali G, Chen S, Roy K. A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds. J Biomed Mater Res A. 2006;77(2):396-405. doi: 10.1002/jbm.a.30601. PubMed PMID: 16444679.
  • 32. Kadry H, Wadnap S, Xu C, Ahsan F. Digital light processing (DLP) 3D-printing technology and photoreactive polymers in fabrication of modified-release tablets. European Journal of Pharmaceutical Sciences. 2019;135:60-7. doi: https://doi.org/10.1016/j.ejps.2019.05.008.