Clustering Assessment Tendency for Big Data Analytics Extract Useful Knowledge

Abstract The clustering method is one of the important methods that can be used to analyze the big volume of data that should be grouped accordingly as much as possible. Depending on the characteristics of the data available today and to deal with big data challenges, several clustering methods have been developed. But, in many situations, we cannot know a priori the number of clusters in the dataset. This refers to an important problem in cluster analysis or determining the numbers of clusters. In this context, this paper describes some clustering methods, with special attention to the Visual Assessment Tendency (VAT) algorithm as one of the known methods. This algorithm is implemented in advanced technologies to analyze big data.Keywords: Big data, clustering tendency, k-means, knowledge, visual assessment algorithm. JEL Codes: C10, C38

Clustering Assessment Tendency for Big Data Analytics Extract Useful Knowledge

___

  • - Bezdek, J.C., Hathaway, R., Huband, J. (2007). Visual assessment of clustering tendency for rectangular dissimilarity matrices. IEEE Transactions on Fuzzy Systems, 15(5) 890–903
  • - Bezdek, J. C., and Hathaway, R. J. (2005). bigVAT: visual assessment of cluster tendency for large data set, in Pattern Recognition, 38 (11), pp. 1875-1886
  • - Bezdek, J.C., and Hathaway, R. J. (2002) . VAT: A tool for visual assessment of (cluster) tendency, in Proc. Intl. Joint Conf. on Neural Networks. Honohulu, HI, pp. 2225-2230.
  • - Boyd, D., and Crawford, K. (2012). Critical questions for big data: Provocations for a cultural, technological, and scholarly phenomenon. Information, Communication & Society 15(5): 662-679.
  • - Ekbia, H., Mattioli, M., Kouper, I. (2015). Big data, bigger dilemmas: A critical review. Journal of the Association for Information Science and Technology , 66(8), 1523-1545.
  • - Fujimaki, R., and Morinaga, S. (2012). The Most Advanced Data Mining of the Big Data Era, Advanced technologies to support big data processing, 7 (2)
  • - Han, J., Jian, P., and Micheline, K. (2011). Data Mining: Concepts and Techniques. Burlington, MA: Elsevier.
  • - Hastie, T., James, G., Witten, D., and Tibshirani, R.( 2013). An Introduction to Statistical Learning with Applications in R. Springer.
  • - Hathaway, R., Bezdek, J. C., and Huband, J. M. (2006). Scalable Visual Assessment of Cluster Tendency, in Pattern Recognition, 39, pp. 1315-1324
  • - Havens, T. C. and Bezdek, J. C. (2012). An efficient formulation of the improved visual assessment of cluster tendency (iVAT) algorithm, Knowledge and Data Engineering, IEEE Transactions, 24 (5), pp. 813–822
  • - Huband, J. M., Bezdek, J. C., and Hathaway, R. (2004). Revised Visual assessment of (cluster) tendency (reVAT), in Proc. Of NAFIPS, pp. 101-104
  • - Katal, A., Wazid, M., and Goudar, R.H. (2013). Big Data: Issues, Challenges, Tools and Good Practices, IEEE Spectrum, 404-409
  • - Kendall, M., and Gibbons, J.D. (1990). Rank Correlation Methods. Oxford University Press, New York
  • - Pakhira, M. K. (2010). Out-of-Core Assessment of Clustering Tendency for Large Data Sets,” in Proc. of the nd Int. Conf. on Advance Computing and Communications, pp. 29-33
  • - Sedkaoui, S. (2018a). Data analytics and big data, London: ISTE-Wiley.
  • - Sedkaoui, S. (2018b). Big Data Analytics for Entrepreneurial Success: Emerging Research and Opportunities, New York: IGI Global.
  • - Sedkaoui, S. (2018c). Statistical and Computational Needs for Big Data Challenges. In A. Al Mazari (Ed.), Big Data Analytics in HIV/AIDS Research (pp. 21-53). Hershey, PA: IGI Global. doi:10.4018/978-1-5225-3203-3.ch002
  • - Sedkaoui, S., and Gottinger, H-W. (2017). The Internet, Data Analytics and Big Data, In Internet Economics: Models, Mechanisms and Management (pp. 92-105), Hans-Werner GOTTINGER: by eBook Bentham science.
  • - Wang, L., Nguyen, T., Bezdek, J., Leckie, C., and Ramamohanarao, K. (2010). iVAT and aVAT: enhanced visual analysis for cluster tendency assessment, in Proc. PAKDD, Hyderabad, India, Jun. 2010.
Yaşar Üniversitesi E-Dergisi-Cover
  • ISSN: 1305-970X
  • Başlangıç: 2006
  • Yayıncı: Yaşar Üniversitesi
Sayıdaki Diğer Makaleler

Küresel Ekonomik, Politik ve Jeopolitik Belirsizliklerin Makroekonomik Etkileri: Türkiye Ekonomisi Üzerine SVAR Analizi (1992:Q1-2018Q:2)

Ömer YALÇINKAYA

1988-2017 Dönem Aralığı İçin Türkiye’de Mali Sürüklenme Etkisinin İncelenmesi ve Değerlendirilmesi

Selçuk Çağrı ESENER, Burak DARICI, Umutcan MEMO

The Influence Of The Physical Environment On Loyalty During A Service Meeting Application To The Case Of The Hotel Industry

Benbouziane MOHAMMED, Saidi TARİK, Djazia CHIB

Sosyal Medya Karmasının Marka Değiştirme Eğilimi Üzerindeki Etkisi: Risk Algısının Aracı Rolü

Edin SÖZER

Reel Döviz Kurlarının Fourier Durağanlık Analizi ile Test Edilmesi

Oktay KIZILKAYA, Faruk MİKE

Gri İlişkisel Analiz ve VIKOR Yöntemlerinin Karşılaştırılması: İmalat Sektörü Üzerine Örnek Bir Uygulama

Ömer Faruk RENÇBER

Bankaların Kurumsal Çevrelerine Stratejik Tepkileri

Eren DURMUŞ-ÖZDEMİR

Geçiş Ekonomilerinde İşgücüne Katılım Oranı ile İşsizlik Oranı İlişkisinin Dinamik Panel Veri Analizi

Hatice KÜÇÜKKAYA, Mustafa ÖZÇAĞ, Yasemin BOZDAĞLIOĞLU

Deniz Konteyner Limanları Perspektifinde Terminal Seçimi için Entegre bir AHP TOPSIS Yaklaşımı Türkiye’nin Konteyner Liman ve Terminalleri İçin Örnek bir Uygulama

Ömer Faruk GÖRÇÜN

Dış Ticarette Ulusal (Yerli) Para Cinsinden (Kliring) Takas ve Ödeme İşlemlerinin Uygulanabilirliği: Türkiye Uygulaması İçin Durum ve Gereksinimler

Cüneyt DİRİCAN