Akış Sitometri ve Veteriner Hekimlikteki Uygulamaları

Akış sitometri hücrelerin fenotipik ve karakteristik özelliklerini kalitatif ve kantitatif olarak inceleyen bir cihazdır. Bu cihaz ile, hücrenin yüzey ve iç proteinleri, organelleri ve diğer bileşenleri analiz ve ayrımı, lazer ve elektronik teknolojisi kullanılarak büyüklük, granülarite ve floresans emisyonu esasına göre gerçekleştirilmektedir. Kısa bir süre içinde heterojen bir popülasyonda analiz yapma ve yüksek saflıkta hücre ayırma yeteneğine sahip olan güçlü bir araçtır. Akış sitometri beşeri hekimlikte hematoloji, immünoloji ve klinik uygulamalarda yaygın olarak kullanılmasının yanı sıra immünoloji laboratuarları- nın vazgeçilmez bir parçası olmuştur. Akış sitometri, son yıllarda geniş kullanım alanı ile veteriner hekimlik içinde önemli bir araştırma ve klinik teşhis aracı haline gelmiştir. Veteriner hekimlerin klinik saha çalışmalarında akış sitometri cihazlarını kullanmaları sayesinde, hayvan ve insan refahını olumsuz etkileyen birçok persiste ve/veya klinik enfeksiyonun tespiti ve tedavisi çok kısa sürede, kolaylıkla yapılabilecektir. Veteriner hekimlikte akış sitometri kullanımının yaygınlığının sağlanması kullanılan ayıraç maddelerin azlığının giderilip, daha fazla sayıda monoklonal antikorun ticari olarak elde edilebilir ve kullanılabilir hale getirilmesi ile mümkündür. Bu rapor ile akış sitometrinin genel prensipleri, avantajları ve veteriner hekimlikte kullanılan uygulamaları derlenmiştir.

___

  • Azkur AK., Kim B., Suvas S., Lee Y., Kumaraguru U., Rouse BT., 2005. Blocking mouse MMP-9 production in tumor cells and mouse cornea by short hairpin (sh) RNA encoding plasmids. Oligonucleotides, 15, 72-84.
  • Barratt-Boyes SM., Rossitto PV., Stott JL., Maclachlan NN., 1992. Flow cytometric analysis of in vitro blueton- gue virus infection of bovine mononuclear cells. J. Gen. Virol., 73, 1953-1960.
  • Bordignon J., Ferreira SCP., Caporale GMM., Carrieri ML., Kotait I., Lima HC., Zanetti CR., 2002. Flow cytometry assay for intracellular rabies virus detection. J. Virol. Methods., 105, 181–186.
  • Brown M., Wittwer C., 2000. Flow cytometry: principles and clinical applications in hematology. Clin. Chem., 46, 1221–1229.
  • Cole DJ., Snowden K., Cohen ND., Smith R., 1999. Detection of cryptosporidium parvum in horses: thresholds of acid-fast stain, immunofluorescence assay, and flow cytometry. J. Clin. Microbiol., 37, 457-460.
  • Daniel H., 2004. A Review and Applications of Flow Cytometry, Department of Chemistry, University of Illinois at Urbana-Champaign, Dec. 17.
  • Dean GA., Groshek PM., Mullins JI., Hoover EA., 1992. Hematopoietic target cells of anemogenic subgroup C versus nonanemogenic subgroup A feline leuke- mia virus. J. Virol., 66, 5561-5568.
  • Dunphy CH., 2004. Applications of flow cytometry and immunohistochemistry to diagnostic hematopathol- ogy. Arch. Pathol. Lab. Med., 128, 1004-1022.
  • Elizabeth GD., Wilkerson MJ., Rush BR., 2002. flow cytometry: clinical applications in equine medicine. J. Vet. Intern. Med., 16, 404–410.
  • Flow Cytometry Report, 2008. Market Overview and Industry Survey Executive Summary. Biocompare Surveys and Reports, Published August 29.
  • Herzenberg LA., Parks D., Sahaf B., Perez O., Roederer M., Herzenberg LA., 2002. The history and future of the fluorescence activated cell sorter and flow cytometry: a view from stanford. Clin. Chem., 48, 1819–1827.
  • Hussein SH., Brandolyn HT., Doug R., 2002. Detection of Escherichia coli O157:H7 in bovine rumen fluid and feces by flow cytometry. Food Control, 13, 387–391.
  • Ibrahim SF., Engh GVD., 2007. Flow cytometry and cell sorting. Adv. Biochem. Engin/Biotechnol., 106, 19– 39.
  • Katherine MB., Greg AR., Michael GH., 2000. Standardized flow cytometry gating in veterinary medicine. Methods. Cell. Sci., 22, 191–198.
  • Kima B., Sarangia PP., Azkur AK., Kaisthaa SD., Rousea BT., 2008. Enhanced viral immunoinflammatory lesions in mice lacking IL-23 responses. Microbes. Infect., 10, 302–312.
  • Koess C., Joern H., 2008. Detection of mastitis in the bovine mammary gland by flow cytometry at early stages. J. Dairy. Res., 75, 225–232.
  • Kumaraguru U., Suvas S., Biswas PS., Azkur AK., Rouse BT., 2004. Concomitant helper response rescues otherwise low avidity CD8 memory CTLs to become efficient effectors in vivo. J. Immunol., 172, 3719- 3724.
  • Maecker HT., Rinfret A., D'souza P., Darden J., Roig E., Landry C., Hayes P., Birungi J., Anzala O., Garcia M., Harari A., Frank I., Baydo R., Baker M., Holbrook J., Ottinger J., Lamoreaux L., Epling CL., Sinclair E., Suni MA., Punt K., Calarota S., El-Bahi S., Alter G., 2005. Standardization of cytokine flow cytometry assays. BMC. Immunol., 6, 1471-2172.
  • McSharry JJ., 1994. Uses of flow cytometry in virology. Clin. Microbiol. Rev., 7, 576-604.
  • Nunez R., 2001. Flow cytometry: principles and instrumentation. Curr. Issues. Mol. Biol., 3, 39-45.
  • Palomares O., Yaman G., Azkur AK., Akkoc T., Akdis M., Akdis CA., 2010. Role of Treg in immune regulation of allergic diseases. Eur. J. Immunol., 40, 1232–1240.
  • Peterson RA., Krull DL., Butler L., 2008. Applications of laser scanning cytometry in immunohistochemistry and routine histopathology. Toxicol. Pathol., 36, 117-132.
  • Qvist P., Aasted B., Bloch B., Meyling A., Rİnsholt L., Houe H., 1990. Flow cytometric detection of bovine viral diarrhea virus in peripheral blood leukocytes of persistently infected cattle. Can. Vet. J., 54, 469-472.
  • Rahman M., 2006. Introduction to flow cytometry. Serotec Ltd. Oxford (UK). Published by Serotec Ltd.
  • Rath D., Johnson LA., 2008. Application and commerciali- zation of flow cytometrically sex-sorted semen. Re- prod. Domest. Anim., 43, 338–346.
  • Rose AS., Knox KS., 2007. Bronchoalveolar lavage as a research tool. Semin. Respir. Crit. Care. Med., 28, 561-573.
  • Shapiro HM., 2003. Practical Flow Cytometry. 4th ed. Wiley-Liss, USA.
  • Suvas S., Azkur AK., Kim BS., Kumaraguru U., Rouse BT., 2004. CD4+CD25+ regulatory T cells control the se- verity of viral immunoinflammatory lesions. J. Im- munol., 172, 4123-4132
  • Suvas S., Azkur AK., Rouse BT., 2006. Qa-1b and CD94- NKG2a interaction regulate cytolytic activity of herpes simplex virus-specific memory CD8 T cells in the latently infected trigeminal ganglia1. J. Immu- nol., 176, 1703-1711.
  • Tarrant JM., 2005. The role of flow cytometry in compa- nion animal diagnostic medicine. Vet. J., 170, 278– 288.
  • Wood B., 2006. 9-color and 10-color flow cytometry in the clinical laboratory. Arch. Pathol. Lab. Med., 130, 680-690.
  • Youli Z., Shahjahan M., Chang CC., 2009. Basic principles of flow cytometry. basic concepts of molecular pa- thology. Molecular Pathology Library, 2, 139-146.