Investigation of serum leptin, ghrelin, irisin, insulin levels and their correlations in cattle with subclinical ketosis

Investigation of serum leptin, ghrelin, irisin, insulin levels and their correlations in cattle with subclinical ketosis

In this study, it was aimed to investigate the correlations with leptin, ghrelin, irisin and insulin levels in the blood serum of cattle with subclinical ketosis. For this purpose, 10 healthy and 10 Holstein cattle with subclinical ketosis obtained from farms in Burdur region were used. A diagnosis of subclinical ketosis was made according to the Rothera test performed in milk, by performing a general clinical examination of the animals. Blood samples were taken from vena jugularis into tubes without anticoagulant. Serum leptin, ghrelin, irisin and insulin levels were measured in the obtained sera using commercial ELISA kits. In cows with subclinical ketosis, serum ghrelin, leptin, irisin and insulin values were increased compared to the control group (p<0.05). In the correlation findings, a highly and quite significant positive correlation was found between serum ghrelin and serum irisin values (r= 0.802; p<0.001). A moderately and quite significant positive correlation was found between plasma ghrelin value and plasma insulin value (r=0.673; p=0.001). A moderately and significant positive correlation was determined between plasma ghrelin value and plasma leptin value, between plasma irisin value and plasma leptin value, and between plasma irisin value and plasma insulin value (r=0.623; p=0.003; r=0.474; p= 0.035; r=0.558; p=0.011). In conclusion, in this study, correlations were observed between serum levels of leptin, irisin, ghrelin and insulin hormones in animals with subclinical ketosis. However, it is thought that leptin, ghrelin, insulin and irisin hormones, which are associated with lipid and carbohydrate metabolism, can be used as important biomarkers in the diagnosis of subclinical ketosis and in the follow-up of its prognosis.

___

  • 1. Boström, P., Wu, J., Jedrychowski, M. P., Korde, A., Ye, L., Lo, J. C., Rasbach, K. A., Boström, E. A., Choi, J. H., Long, J. Z., Kajimura, S., Zingaretti, M. C., Vind, B. F., Tu, H., Cinti, S., Højlund, K., Gygi, S. P., & Spiegelman, B. M. (2012). A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature, 481(7382), 463–468. https://doi.org/10.1038/nature10777
  • 2. Crujeiras, A. B., Zulet, M. A., Lopez-Legarrea, P., de la Iglesia, R., Pardo, M., Carreira, M. C., Martínez, J. A., & Casanueva, F. F. (2014). Association between circulating irisin levels and the promotion of insulin resistance during the weight maintenance period after a dietary weight-lowering program in obese patients. Metabolism: clinical and experimental, 63(4), 520–531. https://doi.org/10.1016/j.metabol.2013.12.007
  • 3. Dänicke, S., Meyer, U., Kersten, S., & Frahm, J. (2018). Animal models to study the impact of nutrition on the immune system of the transition cow. Research in veterinary science, 116, 15–27. https://doi.org/10.1016/j.rvsc.2018.01.023
  • 4. Das, U. N. (2011). Relationship between gut and sepsis: role of ghrelin. World Journal of Diabetes, 2(1), 1:1-7. doi: 10.4239/wjd.v2.i1.1
  • 5. De Meneck, F., de Souza, L. V., Oliveira, V., & do Franco, M. C. (2018). High irisin levels in overweight/obese children and its positive correlation with metabolic profile, blood pressure, and endothelial progenitor cells. Nutrition, Metabolism and Cardiovascular Diseases, 28(7), 756-764. doi:10.1016/j.numecd.2018.04.009
  • 6. Detilleux, J. C., Gröhn, Y. T., & Quaas, R. L. (1994). Effects of clinical ketosis on test day milk yields in Finnish Ayrshire cattle. Journal of dairy science, 77(11), 3316–3323. https://doi.org/10.3168/jds.S0022-0302(94)77272-6
  • 7. Dohoo, I. R., Martin, S. W., Meek, A. H., & Sandals, W. C. D. (1983). Disease, production and culling in Holstein-Friesian cows I. The data. Preventive veterinary medicine, 1(4), 321-334.
  • 8. Drackley, J.K. (1999). Biology of dairy cows during the transition period: the final frontier?. Journal of Dairy Science, 82, 2259- 2273. doi:10.3168/jds.s0022-0302(99)75474-3
  • 9. Duffield, T. F., LeBlanc, S., Bagg, R., Leslie, K., Ten Hag, J., & Dick, P. (2003). Effect of a monensin controlled release capsule on metabolic parameters in transition dairy cows. Journal of dairy science, 86(4), 1171–1176. https://doi.org/10.3168/jds.S0022-0302(03)73700-X
  • 10. Duffield T. (2000). Subclinical ketosis in lactating dairy cattle. The Veterinary clinics of North America. Food animal practice, 16(2), 231–v. https://doi.org/10.1016/s0749-0720(15)30103-1
  • 11. El-Deeb, W.M. & El-Bahr, S.M. (2017). Biomarkers of ketosis in dairy cows at postparturient period: acute phase proteins and pro-inflammatory cytokines. Veterinarski arhiv, 87 (4), 431-440. https://doi.org/10.24099/vet.arhiv.160126c
  • 12. Greenspan, F.S., & Gardner, D.G. (2004). Basic and Clinical Endocrinology. (7rd Ed), New York, Mc Graw Hill.
  • 13. Grummer, R. R. (1995). Impact of changes in organic nutrient metabolism on feeding the transition dairy cow. Journal of animal science, 73(9), 2820–2833. https://doi.org/10.2527/1995.7392820x
  • 14. Guliński, P. (2021). Ketone bodies - causes and effects of their increased presence in cows’ body fluids: A review. Veterinary world, 14(6), 1492–1503. https://doi.org/10.14202/vetworld.2021.1492-1503
  • 15. Gül, Y. (2012). Geviş Getiren Hayvanların İç Hastalıkları. 3. Baskı, Malatya: Medipres Matbaacılık.
  • 16. He, B. X., Du, X. H., Du, Y. L., He, Q. Q., & Mohsin, M. A. (2018). Association of Prepartum Hypoleptinemia and Postpartum Subclinical Ketosis in Holstein Dairy Cows. Pakistan veterinary journal, 38(4): 404-408. http://dx.doi.org/10.29261/pakvetj/2018.087
  • 17. Herdt, T. H. (2000). Ruminant adaptation to negative energy balance. Influences on the etiology of ketosis and fatty liver. The Veterinary clinics of North America. Food animal practice, 16(2), 215–v. https://doi.org/10.1016/s0749-0720(15)30102-x
  • 18. Huh, J. Y., Panagiotou, G., Mougios, V., Brinkoetter, M., Vamvini, M. T., Schneider, B. E., & Mantzoros, C. S. (2012). FNDC5 and irisin in humans: I. Predictors of circulating concentrations in serum and plasma and II. mRNA expression and circulating concentrations in response to weight loss and exercise. Metabolism: clinical and experimental, 61(12), 1725–1738. https://doi.org/10.1016/j.metabol.2012.09.002
  • 19. Kadokawa, H., & Martin, B. G. (2006). A new perspective on Management of reproduction in dairy cows: the need for detailed metabolic information, an improved selection index and extended lactation. Journal of Reproduction and Development, 52, 1, 161-168. https://doi.org/10.1262/jrd.17088
  • 20. Kosmalski, M., Drzewoski, J., Szymczak-Pajor, I., Zieleniak, A., Mikołajczyk-Solińska, M., Kasznicki, J., & Śliwińska, A. (2022). Irisin Is Related to Non-Alcoholic Fatty Liver Disease (NAFLD). Biomedicines, 10(9), 2253. https://doi.org/10.3390/biomedicines10092253
  • 21. Li, B., Yao, Q., Guo, S., Ma, S., Dong, Y., Xin, H., Wang, H., Liu, L., Chang, W., & Zhang, Y. (2019). Type 2 diabetes with hypertensive patients results in changes to features of adipocytokines: Leptin, Irisin, LGR4, and Sfrp5. Clinical and Experimental Hypertension, 41(7), 645-650. https://doi.org/10.1080/10641963.2018.1529779
  • 22. Ma, J., & Chen, K. (2021). The role of Irisin in multiorgan protection. Molecular biology reports, 48(1), 763–772. https://doi.org/10.1007/s11033-020-06067-1
  • 23. Melendez, P., Krueger, T., White, J., Badinga, L., Verstegen, J., Donovan, G. A., & Archbald, L. F. (2006). Effect of ghrelin in dry matter intake and energy metabolism in prepartum sheep: A preliminary study. Theriogenology, 66(8), 1961-1968. https://doi.org/10.1016/j.theriogenology.2006.05.015
  • 24. Mohamed Youssef, A., El-Ashker, M., & Younis, M. (2017). The effect of subclinical ketosis on indices of insulin sensitivity and selected metabolic variables in transition dairy cattle. Comparative Clinical Pathology, 26(2), 329-334. https://doi.org/10.1007/s00580-016-2377-z
  • 25. Momenzadeh, S., Jami, M. S., Jalalvand, A., Esfarjani, F., Shahabi, S., & Zamani, S. (2022). Irisin, A Mediator of Muscle Crosstalk with Other Organs: From Metabolism Regulation to Protective and Regenerative Effects. Current protein & peptide science, 23(2), 89–104. https://doi.org/10.2174/1389203723666220217141918
  • 26. Nowroozi-Asl, A., Aarabi, N., & Rowshan-Ghasrodashti, A. (2016). Ghrelin and its correlation with leptin, energy related metabolites and thyroidal hormones in dairy cows in transitional period. Polish journal of veterinary sciences, 19(1), 197–204. https://doi.org/10.1515/pjvs-2016-0024
  • 27. Park, K. H., Zaichenko, L., Brinkoetter, M., Thakkar, B., Sahin-Efe, A., Joung, K. E., Tsoukas, M. A., Geladari, E. V., Huh, J. Y., Dincer, F., Davis, C. R., Crowell, J. A., & Mantzoros, C. S. (2013). Circulating irisin in relation to insulin resistance and the metabolic syndrome. The Journal of clinical endocrinology and metabolism, 98(12), 4899–4907. https://doi.org/10.1210/jc.2013-2373
  • 28. Perakakis, N., Triantafyllou, G. A., Fernández-Real, J. M., Huh, J. Y., Park, K. H., Seufert, J., & Mantzoros, C. S. (2017). Physiology and role of irisin in glucose homeostasis. Nature reviews. Endocrinology, 13(6), 324–337. https://doi.org/10.1038/nrendo.2016.221
  • 29. Polyzos, S. A., Anastasilakis, A. D., Efstathiadou, Z. A., Makras, P., Perakakis, N., Kountouras, J., & Mantzoros, C. S. (2018). Irisin in metabolic diseases. Endocrine, 59(2), 260–274. https://doi.org/10.1007/s12020-017-1476-1
  • 30. Roh, S. G., Suzuki, Y., Gotoh, T., Tatsumi, R., & Katoh, K. (2016). Physiological Roles of Adipokines, Hepatokines, and Myokines in Ruminants. Asian-Australasian journal of animal sciences, 29(1), 1–15. https://doi.org/10.5713/ajas.16.0001R
  • 31. Sahin-Efe, A., Upadhyay, J., Ko, B. J., Dincer, F., Park, K. H., Migdal, A., Vokonas, P., & Mantzoros, C. (2018). Irisin and leptin concentrations in relation to obesity, and developing type 2 diabetes: A cross sectional and a prospective case-control study nested in the Normative Aging Study. Metabolism: clinical and experimental, 79, 24–32. https://doi.org/10.1016/j.metabol.2017.10.011
  • 32. Senoh, T., Oikawa, S., Nakada, K., Tagami, T., & Iwasaki, T. (2019). Increased serum malondialdehyde concentration in cows with subclinical ketosis. The Journal of veterinary medical science, 81(6), 817–820. https://doi.org/10.1292/jvms.18-0777
  • 33. Stengel, A., Hofmann, T., Goebel-Stengel, M., Elbelt, U., Kobelt, P., & Klapp, B. F. (2013). Circulating levels of irisin in patients with anorexia nervosa and different stages of obesity--correlation with body mass index. Peptides, 39, 125–130. https://doi.org/10.1016/j.peptides.2012.11.014
  • 34. ThidarMyint, H., Yoshida, H., Ito, T., & Kuwayama, H. (2006). Dose-dependent response of plasma ghrelin and growth hormone concentrations to bovine ghrelin in Holstein heifers. The Journal of endocrinology, 189(3), 655–664. https://doi.org/10.1677/joe.1.06746
  • 35. Vargová, M., Petrovič, V., Konvičná, J., Kadaši, M., Zaleha, P., & Kováč, G. (2015). Hormonal profile and body condition scoring in dairy cows during pre partum and post partum periods. Acta Veterinaria Brno, 84(2), 141-151. https://doi.org/10.2754/avb201584020141
  • 36. Wen, M. S., Wang, C. Y., Lin, S. L., & Hung, K. C. (2013). Decrease in irisin in patients with chronic kidney disease. PloS one, 8(5), e64025. https://doi.org/10.1371/journal.pone.0064025
  • 37. Yang, B., Huang, J., He, B., & Li, G. (2010). Dynamic changes in plasma leptin levels in dairy cow with subclinical ketosis. Southwest China Journal of Agricultural Sciences, 23(3), 881-884.
  • 38. Youssef, M., & El-Ashker, M. (2017). Significance of insulin resistance and oxidative stress in dairy cattle with subclinical ketosis during the transition period. Tropical animal health and production, 49(2), 239–244. https://doi.org/10.1007/s11250-016-1211-6
Veterinary Journal of Mehmet Akif Ersoy University-Cover
  • Başlangıç: 2016
  • Yayıncı: Burdur Mehmet Akif Ersoy Üniversitesi
Sayıdaki Diğer Makaleler

The effect of organic matter based decontamination technique on E. coli inhibition in shrimp

Halil YALÇIN, Zübeyde POLAT

Classification of digital dermatitis with image processing and machine learning methods

Kürşad YİĞİTARSLAN, İsmail KIRBAŞ

Determination of antibiotic resistance and biofilm formation in Klebsiella strains isolated from bovine mastitis cases

Mevlüt ATALAY, Uçkun Sait UÇAN

An optimized protocol for the electroporation of NCI H929 multiple myeloma cells

Ayşe KIZILYER

Investigation of serum leptin, ghrelin, irisin, insulin levels and their correlations in cattle with subclinical ketosis

Hale ERGİN EĞRİTAĞ, Oğuz MERHAN, Kadir BOZUKLUHAN, Kemal VAROL, Türker ATCALI

Investigation of plasma pepsinogen level in calves with abomasal distention

Nuri MAMAK, Ramazan YILDIZ, Halil İbrahim GÖKÇE, Türker ATCALI

The effects of safranal against bisphenol AF on some reproductive parameters in male new zealand rabbits

Muhammed ETYEMEZ, Mehmet Şükrü GÜLAY

Nutrient profile, digestibility, and feeding value of common vetch (Vicia sativa) alone or intercropping with different forages

Eren KUTER

Effects of selenium, vitamin E, and β-carotene administration on fertility of Awassi ewes synchronized for estrus in non-breeding season

Enver ÖZAR, Mustafa Kemal SARIBAY, Ayşe Merve KÖSE, Ramazan SERTKOL

Analysis and Estimation of Pathological Data and Findings with Deep Learning Methods

Ahmet Anıl ŞAKIR, Ali Hakan IŞIK, Özlem ÖZMEN, Volkan İPEK