On Multi-G-Metric Spaces

On Multi-G-Metric Spaces

Multisets have many applications in a variety of fields today, including computer science, medicine, banking, engineering, information storage, and information analysis. In this paper, we present a new generalized multi-G-metric space, a multi-G-metric space. We investigate some of its fundamental details, connections, and topological characteristics.

___

  • [1] W. D. Blizard, Mset theory, Notre Dame J. Form. Log., 30(1) (1989), 36-66.
  • [2] W. D. Blizard, Real-valued multisets and fuzzy sets, Fuzzy Sets Syst., 33(1), (1989), 77-97.
  • [3] G. F. Clements, On mset k-families, Discrete Math., 69(2) (1988), 153-164.
  • [4] M. Conder, S. Marshall, A. M. Slinko, Orders on multisets and discrete cones, Order-A Journal on The Theory of Ordered Sets and Its Applications, 24 (2007), 277-296.
  • [5] D. Singh, A. M. Ibrahim, T. Yohana, J. N. Singh, Some combinatorics of multisets, Int. J. Math. Educ. Sci. Technol., 34(4) (2003), 489–499.
  • [6] D. Singh, A. M. Ibrahim, T. Yohana, J. N. Singh, An overview of the applications of multisets, Novi Sad J. Math., 37(2) (2007), 73–92.
  • [7] D. Singh, A. M. Ibrahim, T. Yohana, J. N. Singh, Complementation in mset theory, Int. Math. Forum, 6(38) (2011), 1877–1884.
  • [8] Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7(2) (2006), 289-297.
  • [9] A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets Syst., 64 (1994), 395-399.
  • [10] L. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332 (2007), 1468-1476.
  • [11] S. Das, R. Roy, An introduction to multi metric spaces, Adv. Dyn. Syst. Appl., 16(2) (2021), 605-618.
  • [12] S. Das, R. Roy, Some topological properties of multi metric spaces, J. Math. Comput. Sci., 11 (2021), 7253-7268.
  • [13] K. P. Girish, S. J. John, Mset topologies induced by mset relations, Inf. Sci., 188 (2012), 298-313.