Conchoidal Surfaces in Euclidean 3-space Satisfying $\Delta x_{i}=\lambda _{i}x_{i}$

Conchoidal Surfaces in Euclidean 3-space Satisfying $\Delta x_{i}=\lambda _{i}x_{i}$

In this paper, we study the conchodial surfaces in 3-dimensional Euclidean space with the condition $\Delta x_{i}=\lambda _{i}x_{i}$ where $\Delta $ denotes the Laplace operator with respect to the first fundamental form. We obtain the classification theorem for these surfaces satisfying under this condition. Furthermore, we have given some special cases for the classification theorem by giving the radius function $r(u,v)$ with respect to the parameters $u$ and $v$.

___

  • [1] E.H. Lockwood, A Book of Curves, Cambridge University Press, 1961.
  • [2] A. Albano, M. Roggero, Conchoidal transform of two plane curves, AAECC, 21(2010), 309-328.
  • [3] J.R. Sendra, J. Sendra, An algebraic analysis of conchoids to algebraic curves, AAECC, 19(2008), 413-428.
  • [4] A. Sultan, The Limacon of Pascal: Mechanical generating fluid processing, J. Mech. Eng. Sci., 219(8)(2005), 813-822.
  • [5] R.M.A. Azzam, Limacon of Pascal locus of the complex refractive indices of interfaces with maximally flat reflectance-versus-angle curves for incident unpolarized light, J. Opt. Soc. Am. Opt. Imagen Sci. Vis., 9(1992), 957-963.
  • [6] D. Gruber, M. Peternell, Conchoid surfaces of quadrics, J. Symbolic Computation, 59(2013), 36-53.
  • [7] B. Odehnal, Generalized conchoids, KoG, 21(2017), 35-46.
  • [8] B. Odehnal, M. Hahmann, Conchoidal ruled surfaces, 15. International Conference on Geometry and Graphics, 1-5 August 2012, Montreal, Canada.
  • [9] M. Peternell, D. Gruber, J. Sendra, Conchoid surfaces of rational ruled surfaces, Comput. Aided Geom. Design, 28(2011), 427-435.
  • [10] M. Peternell, D. Gruber, J. Sendra, Conchoid surfaces of spheres, Comput. Aided Geom. Design, 30(2013), 35-44.
  • [11] M. Peternell, L. Gotthart, J. Sendra, J. R. Sendra, Offsets, conchoids and pedal surfaces, J. Geo., 106(2015), 321-339.
  • [12] B. Bulca, S.N. Oruç, K. Arslan, Conchoid curves and surfaces in Euclidean 3-Space, J. BAUN Inst. Sci. Technol., 20(2) (2018), 467-481.
  • [13] M. Dede, Spacelike Conchoid curves in the Minkowski plane, Balkan J. Math., 1(2013), 28–34.
  • [14] M.Ç . Aslan, G.A. S¸ekerci, An examination of the condition under which a conchoidal surfaces is a Bonnet surface in the Euclidean 3-Space, Facta Univ. Ser. Math. Inform., 36(2021), 627–641.
  • [15] S. C¸ elik, H.B. Karada˘g, H.K. Samanci, The conchoidal twisted surfaces constructed by anti-symmetric rotation matrix in Euclidean 3-Space, Symmetry, 15(6)(2023), 1191.
  • [16] O.J. Garay, An extension of Takahashi’s theorem, Geom. Dedicata, 34(1990), 105-112.
  • [17] R. Lopez, Minimal translation surfaces in hyperbolic space, Beitr. Algebra Geom., 52(1) (2011), 105-112. [18] M. Bekkar, H. Zoubir, Surfaces of revolution in the 3-Dimensional Lorentz-Minkowski space satisfying Dri liri, Int. J. Contemp. Math. Sciences, 3(24) (2008), 1173 - 1185.
  • [19] M. Bekkar, B. Senoussi, Factorable surfaces in three-dimensional Euclidean and Lorentzian spaces satisying Dri = liri, Int. J. Geom., 103(2012), 17-29.
  • [20] S.A. Difi, H. Ali, H. Zoubir, Translation-Factorable surfaces in the 3-dimensional Euclidean and Lorentzian spaces satisfying Dri = liri, EJMAA, 6(2) (2018), 227-236.
  • [21] H. Al-Zoubi, A.K. Akbay, T. Hamadneh, M. Al-Sabbah, Classification of surfaces of coordinate finite type in the Lorentz–Minkowski 3-Space, Axioms, 11(7) (2022), 326.
  • [22] A. Gray, Modern Differential Geometry of Curves and Surfaces with Mathematica, Second Edition, CCR Press, 1997.
  • [23] B. O’Neill, Elementary Differential Geometry, Academic Press, USA, 1997.
  • [24] B.Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, World Scientific, Singapore, 1983.
  • [25] B.Y. Chen, Finite Type Submanifolds and Generalizations, Universita degli Studi di Roma La Sapienza, Istituto Matematico Guido Castelnuovo, Rome, 1985.
  • [26] T. Takahashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan, 18(1966), 380-385.