Trombe duvarı etkisiyle çalışan, binaya entegre yarı saydam fotovoltaik sistemin akıllı uygulaması

Gelişen teknolojiler ve artan nüfusla birlikte hem elektrik, hem de ısıtma amaçlı kullanılan fosil yakıtlar küresel ısınmada en büyük faktör olan karbondioksit (CO2) salınımı miktarlarını arttırmaktadır. Bazı binaların ısı yalıtımının iyi olmaması, elektrik iletim ve dağıtımdan kaynaklı kayıpların fazla olması konutlarda harcanan elektrik oranının yüksek kalmasını sağlamaktadır. Bu çalışma ile model odada Trombe duvarı etkisiyle çalışan yarı saydam-binaya entegre fotovoltaik sistemin akıllı uygulaması ile, güneş enerjisini hem aktif hem de pasif olarak aynı anda kullanarak güneşten maksimum verim elde edilmesini sağlamaktadır. Bunun sonucunda binalarda hem ısı yalıtımını sağlarken hem de elektrik üretilmektedir. Yapılmış olan iki model odada Trombe duvarı etkisiyle çalışan yarı saydam fotovoltaik sistemin 0.4°C hassasiyetli sıcaklık ölçerler ile Arduino mega 2560 kullanılarak veri toplayan kart imal edilerek hesaplanmıştır. Şubat-Mayıs ayı gibi güç bir dönemde yapılan ilk deneysel çalışmada güneş panelinin açısının dik olması ve yarı şeffaf hücre yapısının veriminin muadillerine göre daha düşük olmasıyla da ancak 14.93 kWh enerji üretilebilmiştir. Şubat ayında 100 kJ, Mart ayında 77,85 kJ, Nisan ayında 97.66 kJ, 1-10 Mayıs tarihleri arasında 49.93 kJ ve toplam 92 günde 325.44 kJ enerji tasarrufu sağlanmıştır. Böylece odalardan ayrı ayrı veriler toplanarak detaylı olarak farkları incelenmiş ve alternatif modelin neler sunabildiği görülmüştür.

Intelligent application of building integrated semi-transparent photovoltaic system working with Trombe wall effect

Abstract: The emission of carbon dioxide (CO2), which is the biggest factor in global warming, increases the use of both electricity production and heating with the developing technological innovations and increasing population. The poor thermal insulation of some buildings and the high losses due to electricity transmission and distribution ensure that the rate of electricity consumed in residences remains high. In this study, with the smart application of the translucent-building-integrated photovoltaic system working with the effect of the Trombe wall in the model rooms, it provides maximum efficiency from the sun by using the solar energy both actively and passively at the same time. As a result, it provides both thermal insulation and electricity generation in buildings. Two model rooms are prepared and the 0.4°C accuracy temperature sensor of the semi-transparent photovoltaic system working with the effect of the Trombe wall is prepared and the data collecting card is produced using Arduino mega 2560 and calculated. In the first experimental study carried out in a difficult period such as February to May, only 14.93 kWh of energy could be produced due to the steep angle of the solar panel and the lower efficiency of the semi-transparent cell structure than its counterparts. Data are collected separately from the two model rooms, and their differences are examined in detail and it is seen what alternative models could offer. Energy savings of 100 kJ in February, 77.85 kJ in March, 97.66 kJ in April and 49.93 kJ between 1-10 May and 325.44 kJ in total 92 days are achieved. Thus, separate data are collected from the two model rooms and their differences are examined in detail and it is seen what alternative model could offer.

___

  • [1] J. Jie, Y. Hua, H. Wei, P. Gang, L. Jianping, and J. Bin, “Modeling of a novel Trombe wall with PV cells,” Build. Environ., vol. 42, no. 3, pp. 1544–1552, Mar. 2007, doi: 10.1016/j.buildenv.2006.01.005.
  • [2] H. M. Maghrabie, K. Elsaid, E. T. Sayed, M. A. Abdelkareem, T. Wilberforce, and A. G. Olabi, “Building-integrated photovoltaic/thermal (BIPVT) systems: Applications and challenges,” Sustain. Energy Technol. Assessments, vol. 45, p. 101151, Jun. 2021, doi: 10.1016/j.seta.2021.101151.
  • [3] S. Barman, A. Chowdhury, S. Mathur, and J. Mathur, “Energy performance of window integrated photovoltaic system in actual operating condition,” Sol. Energy, vol. 224, pp. 480–490, Aug. 2021, doi: 10.1016/j.solener.2021.06.014.
  • [4] L. Xu et al., “A hybrid PV thermal (water or air) wall system integrated with double air channel and phase change material: A continuous full-day seasonal experimental research,” Renew. Energy, vol. 173, pp. 596–613, Aug. 2021, doi: 10.1016/j.renene.2021.04.008.
  • [5] B. Kundakci Koyunbaba and Z. Yilmaz, “The comparison of Trombe wall systems with single glass, double glass and PV panels,” Renew. Energy, vol. 45, pp. 111–118, Sep. 2012, doi: 10.1016/J.RENENE.2012.02.026.
  • [6] F. Stazi, A. Mastrucci, and C. Di Perna, “The behaviour of solar walls in residential buildings with different insulation levels: An experimental and numerical study,” Energy Build., vol. 47, pp. 217–229, Apr. 2012, doi: 10.1016/J.ENBUILD.2011.11.039.
  • [7] J. Jie, Y. Hua, P. Gang, J. Bin, and H. Wei, “Study of PV-Trombe wall assisted with DC fan,” Build. Environ., vol. 42, no. 10, pp. 3529–3539, Oct. 2007, doi: 10.1016/J.BUILDENV.2006.10.038.
  • [8] Q. Ma, H. Fukuda, X. Wei, and A. Hariyadi, “Optimizing energy performance of a ventilated composite Trombe wall in an office building,” Renew. Energy, vol. 134, pp. 1285–1294, Apr. 2019, doi: 10.1016/J.RENENE.2018.09.059.
  • [9] L. Zhang, J. Dong, S. Sun, and Z. Chen, “Numerical simulation and sensitivity analysis on an improved Trombe wall,” Sustain. Energy Technol. Assessments, vol. 43, p. 100941, Feb. 2021, doi: 10.1016/j.seta.2020.100941.
  • [10] C. Wang, J. Ji, M. M. Uddin, B. Yu, and Z. Song, “The study of a double-skin ventilated window integrated with CdTe cells in a rural building,” Energy, vol. 215, p. 119043, Jan. 2021, doi: 10.1016/j.energy.2020.119043.
  • [11] C. Wang, J. Ji, B. Yu, L. Xu, Q. Wang, and X. Tian, “Investigation on the operation strategy of a hybrid BIPV/T façade in plateau areas: An adaptive regulation method based on artificial neural network,” Energy, vol. 239, p. 122055, Jan. 2022, doi: 10.1016/j.energy.2021.122055.
  • [12] C. Zhang, J. Ji, C. Wang, W. Ke, H. Xie, and B. Yu, “Experimental and numerical studies on the thermal and electrical performance of a CdTe ventilated window integrated with vacuum glazing,” Energy, vol. 244, p. 123128, Apr. 2022, doi: 10.1016/j.energy.2022.123128.
  • [13] C. Wang, J. Ji, C. Zhang, W. Ke, Y. Tang, and X. Tian, “Experimental and numerical investigation of a multi-functional photovoltaic/thermal wall: A practical application in the civil building,” Energy, vol. 241, p. 122896, Feb. 2021, doi: 10.1016/j.energy.2021.122896.
  • [14] İnceten - Binalarda Isı Kayıplarının Dağılımı. http://www.inceten.com/dokumanlar/binalarda-isi-kayiplarinindagilimi (Erişim tarihi: 20.03.2019).
  • [15] Skoplaki, E. & Palyvos, J.A. On the temperature dependence of photovoltaic module electrical performance: a review of efficiency/power correlation. Solar Energy Yayınları, 2009.
  • [16] Tiwari, A., Dubey, S., Sandhu, G.S., Sodha, M.S. & Anwar, S.I. Exergy analysis of integrated photovoltaic thermal solar Waterheaterunde constant flow rate and constant collection temperature modes. Applied Energy , 2009.
  • [17] Ji Jie, Yi Hua, He Wei, Pei Gang, Lu Jianping, Jiang Bin, Modeling of a novel Trombe wall with PV cells, Building and Environment, 42(3), 1544-1552, 2007.