Eşit güçteki iki farklı motorun yapay zeka tabanlı skaler kontrol ile performans analizi: elektrikli araçlar için bir çalışma

Otomobil üreticilerinin; yakıt tasarrufu, hava kirliliği, karbon emisyonu gibi pek çok problemin giderilmesi adına elektrikli araçlara yöneldiğini görmekteyiz. Ancak elektrikli araçların petrol yakıtlı araçlara göre menzil ve hız problemleri bulunmaktadır. Bu bakımdan kullanımı ve üretimi giderek artan bu araçların performansının arttırılması büyük önem arz etmektedir. Bu çalışmada Asenkron Motor (ASM) ve Sürekli Mıknatıslı Senkron Motorun (SMSM) farklı kontrol yöntemleriyle performansı incelenmiş ve böylece bir elektrikli araçların trafikteki performansının arttırılması hedeflenmiştir. Bu bağlamda elektrikli araçların seyir halinde yolun durumuna bağlı olarak hız denetiminin sağlanması ve daha az güç harcayan motorun seçilmesi hedeflenmiştir. Bu amaçla çalışmada eşit güce sahip iki farklı motorun aynı kontrol yöntemleriyle performansı incelenerek değerlendirilmiştir. Elektrik motorlarının kontrolünde Skaler Kontrol (SK) temel alınmıştır. SK ile yapılan benzetim testlerinden elde edilen sonuçlara göre PI ve Yapay Zekâ (YZ) kontrol çalışmaları gerçekleştirilmiştir. Burada SK ve PI kontrol yöntemleri karşılaştırma amaçlı olarak verilmiştir. Çalışmada motorlar; SK, PI + SK, YZ + SK yöntemleriyle test edilmiş ve elde edilen grafikler yardımıyla farklı yol koşullarında en iyi performansı gösteren motor, “hız, tork ve güç” parametrelerine göre belirlenmiştir.

Performance analysis of two different motors with equal power with artificial ıntelligence: a study for electric vehicles

Automobile manufacturers; We see that it is turning to electric vehicles in order to eliminate many problems such as fuel saving, air pollution and carbon emission. However, electric vehicles have range and speed problems compared to petroleum fuel vehicles. In this regard, it is of great importance to increase the performance of these vehicles, which are increasingly used and produced. In this study, the performance of the Asynchronous Motor (ASM) and the Permanent Magnet Synchronous Motor (PMSM) with different control methods were investigated, thereby increasing the performance of an electric vehicle in traffic. In this context, it is aimed to provide speed control of electric vehicles depending on the condition of the road while driving and to select the motor that uses less power. For this purpose, in the study, the performance of two different engines with equal power was examined by evaluating them with the same control methods. Scalar Control (SC) is based on the control of electric motors. According to the results obtained from simulation tests with SC, PI and Artificial Intelligence (AI) control studies were carried out. Here, SC and PI control methods are given for comparison purposes. Engines in the study; The engine, which has been tested with SC, PI + SC, AI + SC methods and with the help of the graphics obtained, has been determined according to the parameters of "speed, torque and power", which perform best in different road conditions.

___

  • [1] Yoichi H, "Future Vehicle driven by Electricity and Control-Research on Four Wheel Motored “UOT Electric March II”," IEEE transactions on industrial electronics, vol. 51, pp. 954-962, 2004.
  • [2] Rietmann N, Lieven T, "A comparison of policy measures promoting electric vehicles in 20 countries," in The Governance of Smart Transportation Systems, ed: Springer, 2019, pp. 125-145.
  • [3] Sun X, Shi Z, Lei G, Guo Y, ve Zhu J, "Analysis and design optimization of a permanent magnet synchronous motor for a campus patrol electric vehicle," IEEE Transactions on Vehicular Technology, vol. 68, pp. 10535-10544, 2019.
  • [4] Ohashi T, Saruwatari Y, ve Ozawa H, "Electric vehicle," ed: Google Patents, 2019.
  • [5] Onat NC, Kucukvar M, ve Afshar S, "Eco-efficiency of electric vehicles in the United States: A life cycle assessment based principal component analysis," Journal of Cleaner Production, vol. 212, pp. 515-526, 2019.
  • [6] Demirci Y, "Hibrit araçlarda elektrik motoru denetimi," Master Yüksek Lisans, Fen Bilimleri Enstitüsü, Kırıkkale Üniversitesi, Kırıkkale, 2010.
  • [7] Affanni A, Bellini A, Franceschini G, Guglielmi P, ve Tassoni C, "Battery choice and management for new-generation electric vehicles," IEEE Transactions on Industrial Electronics, vol. 52, pp. 1343-1349, 2005.
  • [8] Harding G, "Electric vehicles in the next millennium," Journal of power sources, vol. 78, pp. 193-198, 1999.
  • [9] Kaloko BS, Soebagio M, ve Purnomo MH, "Design and development of small electric vehicle using MATLAB/Simulink," International Journal of Computer Applications, vol. 24, pp. 19-23, 2011.
  • [10] Gencer C, Gedikpinar M, "Modeling and simulation of bldcm using matlab/simulink," Journal of Applied sciences, vol. 6, pp. 688-691, 2006.
  • [11] Patel VKS, Pandey A, "Modeling and performance analysis of PID controlled BLDC motor and different schemes of PWM controlled BLDC motor," International Journal of Scientific and Research Publications, vol. 3, pp. 1-14, 2013.
  • [12] Otkun O, Dogan RÖ, ve Akpinar AS, "Neural Network Based Scalar Speed Control of Linear Permanent Magnet Synchronous Motor," Journal of the Faculty of Engineering and Architecture of Gazi University, vol. 30, pp. 395-404, 2015.
  • [13] Rao APC, Y. Obulesh, Babu CS, "Mathematical modeling of BLDC motor with closed loop speed control using PID controller under various loading conditions," arpn journal of engineering and applied sciences, vol. 7, pp. 1321-1328, 2012.
  • [14] Patel VKS, "Modeling and simulation of brushless DC motor using PWM control technique," 2013.
  • [15] Koca GÖ, ve Akpolat ZH, "Bulanık Mantık ve Erişim Kuralı Yaklaşımını Kullanarak Bir Elektrikli Aracın Dayanıklı Hız Denetimi," Politeknik Dergisi, vol. 9, pp. 93-103, 2006.
  • [16] Mun J-M, Park G-J, Seo S, Kim Y-J, ve Jung S-Y, "Design characteristics of IPMSM with wide constant power speed range for EV traction," IEEE Transactions on Magnetics, vol. 53, pp. 1-4, 2017.
  • [17] Yang Y, Castano SM, Yang R, Kasprzak M, Bilgin B, Sathyan A, et al., "Design and comparison of interior permanent magnet motor topologies for traction applications," IEEE Transactions on Transportation Electrification, vol. 3, pp. 86-97, 2017.
  • [18] Jiang JW, Bilgin B, Sathyan A, Dadkhah H, ve Emadi A, "Noise and vibration reduction for IPMSM by using rotor circumferential slits," in 2017 IEEE International Electric Machines and Drives Conference (IEMDC), 2017, pp. 1-8.
  • [19] Demir U ve Aküner MC, "Elektrikli bir araç için tekerlek içi asenkron motorun tasarım ve optimizasyonu," Journal of the Faculty of Engineering & Architecture of Gazi University, 2018.
  • [20] Sezenoğlu C, Aydoğan F, Kurnaz Araz H, Akgül L, ve Erçin ME, "Elektrikli ve Hibrit Elektrikli Araçlar için Makinası ve Sürücüsü," Cadem A.Ş., 2017.
  • [21] Chan C, ve Lo W, "Control strategy of PWM inverter drive system for electric vehicles," IEEE Transactions on Industrial Electronics, pp. 447-456, 1987.
  • [22] De Santiago J, Bernhoff H, Ekergård B, Eriksson S, Ferhatovic S, Waters R, et al., "Electrical motor drivelines in commercial all-electric vehicles: A review," IEEE Transactions on vehicular technology, vol. 61, pp. 475-484, 2012.
  • [23]Ko S-Y, Ko J-K, Lee S-M, Cheon J-S, ve H.-S. Kim H-S, "A study on in-wheel motor control to improve vehicle stability using human-in-the-loop simulation," Journal of Power Electronics, vol. 13, pp. 536-545, 2013.
  • [24] Lin F-J, Hung Y-C, J.-C. Hwang J-C, Chang I-P, ve M.-T. Tsai, "Digital signal processor-based probabilistic fuzzy neural network control of in-wheel motor drive for light electric vehicle," IET Electric Power Applications, vol. 6, pp. 47-61, 2012.
  • [25] Pei J, Zhao L-M, Wang DJ, ve Chu L, "Fuzzy PID control of traction system for vehicles," in 2005 International Conference on Machine Learning and Cybernetics, 2005, pp. 773-777.
  • [26] Omatu S, Yoshioka M, Kosaka T, Yanagimoto H, ve Dargham JA, "Neuro-PID Control of Speed and Torque of Electric Vehicle," 2010.
  • [27] Chang L, "Comparison of AC drives for electric vehicles-a report on experts' opinion survey," IEEE Aerospace and Electronic Systems Magazine, vol. 9, pp. 7-11, 1994.
  • [28] Goss J, Popescu M, ve Staton D, "A comparison of an interior permanent magnet and copper rotor induction motor in a hybrid electric vehicle application," in 2013 International Electric Machines & Drives Conference, 2013, pp. 220-225. [29] Gwozdziewicz M, ve Antal L, "Investigation of line start permanent magnet synchronous motor and induction motor properties," Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Politechniki Wrocławskiej, pp. 13-20, 2010.
  • [30] Zeraoulia M, Benbouzid MEH, ve Diallo D, "Electric motor drive selection issues for HEV propulsion systems: A comparative study," IEEE Transactions on Vehicular technology, vol. 55, pp. 1756-1764, 2006.
  • [31] Xue X, Cheng K, ve Cheung N, "Selection of electric motor drives for electric vehicles," in 2008 Australasian Universities Power Engineering Conference, 2008, pp. 1-6.
  • [32] Grunditz E, ve Jansson E, Modelling and Simulation of a Hybrid Electric Vehicle for Shell Eco-marathon and an Electric Go-kart. Sweden: Chalmers University of Technology, 2009.
  • [33] Instruments T, "Clarke & Park Transforms on the TMS320C2xx," Application Report Literature Number: BPRA048, 1996.
  • [34] Başer E, "Elektrikli Araçlarda Yol Koşullarına Uygun Motor Seçimi Algoritması Geliştirme," Master Yüksek Lisans, Fen Bilimleri Enstitüsü, Düzce Üniversitesi, Düzce, 2016. [35] Abu-Rub H, Iqbal A, ve Guzinski J, High performance control of AC drives with MATLAB/Simulink models: John Wiley & Sons, 2012.
  • [36] Kavuran G, ve Orhan A, "Open-loop speed control of permanent magnet synchronous motor fed by matrix converter," in National Conference on Electrical, Electronics and Computer Engineering, 2010, pp. 334-338.
  • [37] Åström KJ, Hägglund T, ve Astrom KJ, Advanced PID control vol. 461: ISA-The Instrumentation, Systems, and Automation Society Research Triangle …, 2006.
  • [38] MathWorks. (2019, 25/04/2019). Matlab. Available: https://www.mathworks.com/products/matlab.html
  • [39] Yavuz S, ve Deveci M, "İstatiksel Normalizasyon Tekniklerinin Yapay Sinir Ağin Performansina Etkisi," Erciyes Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, pp. 167-187, 2012.
  • [40] Otkun Ö, "Çift Yanlı Doğrusal Hareketli Sürekli Mıknatıslı Senkron Motorun Tasarımı, Üretimi, ve Yapay Sininr Ağ Tabanlı Skaler Hız Denetimi " Doktor Doktora, Fen Bilimleri Enstitüsü, Karadeniz Teknik Üniversitesi, Trabzon, 2015.
  • [41] Ehsani M, Gao Y, Longo S, ve Ebrahimi K, Modern electric, hybrid electric, and fuel cell vehicles: CRC press, 2018.