PV/T Destekli Transkritik Rankine Çevriminin Farklı Süperkritik Çalışma Akışkanları İçin Performansının Değerlendirilmesi

Bu çalışmanın amacı, birleşik bir güneş enerjisi üretim sisteminin performansını incelemektir. Sistem, Fotovoltaik/Termal (PV/T) paneller, bir pompa, bir kondansatör ve bir türbinden oluşmaktadır. Çalışma akışkanı olarak R744, R170 ve R41 kullanılmıştır. Sistemin performans değerlendirmesini gerçekleştirmek için Engineering Equation Solver (EES) yazılım programı kullanılmaktadır. En iyi çalışan akışkanı belirlemek için karşılaştırmalı termodinamik analizler ve parametrik çalışmalar yapılır. Sonuçlar, en yüksek güç üretim oranının 0.4669 kW ile R41 ve ardından R744 kullanılan çevrim için hesaplandığını göstermektedir. Ayrıca, en yüksek enerji ve ekserji verimi R41 akışkanı kullanıldığında, en düşük enerji ve ekserji verimi ise R170 akışkanı kullanıldığında hesaplanmıştır. R170'in, 20.57 kW ekserji yok etme oranı ile en yüksek tersinmezliğe sahip olduğu bulunmuştur. Bu analiz sonuçlarına göre en iyi çalışma akışkanı R41 olarak belirlenmiştir. P1/P2 ve güneş ışınımının sistem performansı üzerindeki güç üretimi, enerji verimliliği, ekserjinin yok edilmesi ve ekserji verimliliği gibi etkilerini belirlemek için parametrik analizler yapılmıştır. Tüm akışkanlar için P1/P2 ve güneş ışınımı ile güç üretim hızı, enerji verimliliği ve ekserji veriminin arttığı gösterilmiştir. Artan basınç oranı ile ekserji yıkımı azalırken, artan güneş ışınımı ile ekserji yıkımı artmaktadır.

Performance Assessment of PV/T Driven Transcritical Rankine Cycle: A Comparative Study on Supercritical Working Fluids

The proposed study aims to examine the performance of a combined solar power generation system. The system comprises photovoltaic/thermal (PV/T) panels, a pump, a capacitor, and a turbine. R744, R170, and R41 were used as working fluids. The Engineering Equation Solver (EES) program is used to perform the performance evaluation of the system. Comparative thermodynamic analyzes and parametric studies are conducted to determine the best fluid. The results demonstrate that the highest power production rate of 0.4669 kW is calculated for the cycle using R41, followed by R744. Additionally, the highest energy efficiency and efficiency of exergy are calculated when R41 fluid is used, while the lowest energy and efficiency of exergy are calculated when R170 fluid is used. R170 is determined to have the highest irreversibility, with a destruction rate of exergy of 20.57 kW. According to the results of this analysis, the best working fluid was determined as R41. Parametric analyzes were performed to determine the effects of P1/P2 and solar irradiation on the performance of the system, like power production, efficiency of energy, destruction of exergy, and efficiency of exergy. It has been shown that power generation, energy efficiency, and efficiency of exergy increase with P1/P2 and solar irradiation for all fluids. While the destruction of exergy decreases with increasing pressure ratio, exergy destruction increases with increasing solar irradiation.

___

  • Kizilkan Ö. Evaluation of Transcritical Rankine Cycle Driven by Low‐Temperature Geothermal Source for Different Supercritical Working Fluids. International Journal of Technological Sciences, 3(11), 155-169, 2019.
  • Soytürk Yıldırım G. Faz Değiştiren Madde ile Güneş Enerjisinin Depolanmasının ve Isıtma Uygulamalarında Kullanımının İncelenmesi. MSc Thesis, Süleyman Demirel University, Isparta, Turkey, 2018 (In Turkish).
  • Kazemian A, Taheri A, Sardarabadi S, Ma T, Fard MP, Peng J. Energy, Exergy and Environmental Analysis of Glazed and Unglazed PVT System Integrated with Phase Change Material: An Experimental Approach. Solar Energy, 201, 178-189, 2020.
  • Shiroudi A, Taklimi SRH, Mousavifar SA, Taghipour P. Stand-Alone PV-Hydrogen Energy System in Taleghan-Iran Using HOMER Software: Optimization and Technoeconomic Analysis. Environmental Development and Sustainable, 15, 1389–1402, 2013.
  • Ma T, Yang H, Zhang Y, Lu L, Wang X. Using Phase Change Materials in Photovoltaic Systems for Thermal Regulation and Electrical Efficiency Improvement: A Review and Outlook. Renewable and Sustainable Energy Reviews, 43, 1273-1284, 2015.
  • Babayan M, Mazraeh AE, Yari M, Niazi NA, Saha SC. Hydrogen Production with a Photovoltaic Thermal System Enhanced by Phase Change materials, Shiraz, Iran case study. Journal of Cleaner Production, 215, 1262-1278, 2019.
  • Gül M, Akyüz E. Hydrogen Generation from a Small-Scale Solar Photovoltaic Thermal (PV/T) Electrolyzer System: Numerical Model and Experimental Verification. Energies, 13, 2997, 2020.
  • Sachit FA, Rosli MAM, Tamaldin N, Misha S, Abdullah AL. Nanofluids used in Photovoltaic Thermal (PV/T) Systems: A Review. International Journal of Engineering & Technology, 7, 599-611, 2018.
  • Zulkepli A, Ibrahim H, Alias A, Azran Z, Basrawi F. Review on the Recent Developments of Photovoltaic Thermal (PV/T) and Proton Exchange Membrane Fuel Cell (PEMFC) Based Hybrid System. MATEC Web of Conferences, 74, 00019, 2016.
  • Solimpeks. https://www.solimpeks.com.tr/ (Date of Access: 17.03.2023)
  • Tchanche BF, Lambrinos G, Frangoudakis A, Papadakis G. Low-Grade Heat Conversion into Power Using Organic Rankine Cycles – A Review of Various Applications. Renewable and Sustainable Energy Reviews, 15, 3963-3979, 2011.
  • He C, Liu C, Gao H, Xie H, Li Y, Wu S, Xu J. The Optimal Evaporation Temperature and Working Fluids for Subcritical Organic Rankine Cycle. Energy, 38, 136-143, 2012.
  • Peris B, Navarro-Esbri J, Moles F, Collado R, Mota-Babiloni A. Performance Evaluation of an Organic Rankine Cycle for Power Applications from Low Grade Heat Sources. Applied Thermal Engineering 75, 763-769, 2015.
  • Sun J, Liu Q, Duan Y. Effects of Evaporator Pinch Point Temperature Difference on Thermo Economic Performance of Geothermal Organic Rankine Cycle Systems. Geothermics, 75, 249‐258, 2018.
  • Wang X, Levy EK, Pan C, Romero CE, Banerjee A, Maya CB, Pan L. Working Fluid Selection for Organic Rankine Cycle Power Generation Using Hot Produced Supercritical CO2 from a Geothermal Reservoir. Applied Thermal Engineering, 149, 1287–1304, 2019.
  • Bahrami M, Pourfayaz F, Kasaeian A. Low Global Warming Potential (GWP) Working Fluids (WFs) for Organic Rankine Cycle (ORC) Applications. Energy Reports, 8, 2976-2988, 2022.
  • Thurairajaab K, Wijewardane A, Jayasekara S, Ranasinghe C. Working Fluid Selection and Performance Evaluation of ORC. Energy Procedia, 156, 244‐248, 2019.
  • Ganjehsarabi H. Mixed Refrigerant as Working Fluid in Organic Rankine Cycle for Hydrogen Production Driven by Geothermal Energy. International Journal of Hydrogen Energy, 44, 18703-18711, 2019
  • Yu H, Kim D, Gundersen T. A Study of Working Fluids for Organic Rankine Cycles (ORCs) Operating Across and Below Ambient Temperature to Utilize Liquefied Natural Gas (LNG) Cold Energy. Energy, 167, 730‐739, 2019.
  • Song C, Gu M, Miao Z, Liu C, Xu J. Effect of Fluid Dryness and Critical Temperature on Transcritical Organic Rankine Cycle. Energy, 174, 97‐109, 2019.
  • Xu W, Deng D, Zhang Y, Zhao D, Zhao L. How to Give a Full Play to the Advantages of Zeotropic Working Fluids in Organic Rankine Cycle (ORC). Energy Procedia, 158, 1591‐1597, 2019.
  • Wang E, Zhang M, Meng F, Zhang H. Zeotropic Working Fluid Selection for an Organic Rankine Cycle Bottoming with a Marine Engine. Energy, 243, 123097, 2022.
  • Han J, Wang X, Xu J, Yi N, Talesh SSA. Thermodynamic Analysis and Optimization of an Innovative Geothermal-Based Organic Rankine Cycle Using Zeotropic Mixtures for Power and Hydrogen Production. International Journal of Hydrogen Energy, 45, 8282-8299, 2020.
  • Karellas S, Schuster A. Supercritical Fluid Parameters in Organic Rankine Cycle Applications. International Journal of Thermodynamics, 11(3), 101‐108, 2008.
  • Radulovic J. Utilisation of Fluids with Low Global Warming Potential in Supercritical Organic Rankine Cycle. Journal of Thermal Engineering, 1(1), 24‐30, 2015.
  • Bolaji BO, Huan Z. Ozone Depletion and Global Warming: Case for the Use of Natural Refrigerant. Renewable and Sustainable Energy Rewiews 18, 49-54, 2013.
  • Refrigerants naturally, C/O Heat International, http://www.refrigerantsnaturally.com/ (Date of Access: 16.03.2023)
  • Sakellariou E, Axaopoulos P. An Experimentally Validated, Transient Model for Sheet and Tube PVT Collector. Solar Energy, 174, 709-718, 2018.
  • Sarhaddi F, Farahat S, Ajam H, Behzadmehr A, Adeli MM. An Improved Thermal and Electrical Model for a Solar Photovoltaic Thermal (PV/T) Air Collector. Applied Energy, 87, 2328-2339, 2010.
  • Cengel YA, Boles MA. Thermodynamics: An Engineering Approach 8th Edition, 2015.
  • Bejan A, Moran MJ. Thermal Design and Optimization, New York: John Wiley & Sons,1996.
  • Dincer I, Rosen MA. Exergy: Energy, Environment and Sustainable Development, 2013.
  • Kalogirou S. Solar Energy Engineering Processes and System. Elsevier, 2009
  • Çengel YA. Heat and Mass Transfer. İzmir Güven Bookstore, Güven Scientific, 2011 (in Turkish)
  • Yazdanifard F, Ebrahimnia-Bajestan E, Ameri Mehran. Investigating the Performance of a Water-Based Photovoltaic/Thermal (PV/T) Collector in Laminar and Turbulent Flow Regime. Renewable Energy, 99, 295-306, 2016.
  • Soteris A, Sotiriοs K, Konstantinos B, Camelia S, Viorel B. Exergy Analysis of Solar Thermal Collectors and Processes. Progress in Energy and Combustion Science, 56, 106–137,2016.