Güneş enerjisi destekli ısıtma sistemlerinde güneş kolektörü ve sıcak su deposu kapasitesi seçimi için parametrik analiz

Bu çalışmada konutlarda ısıtma sistemlerine güneş enerjili destek sistemlerinin entegre edilmesi ile ilgili bir çalışma yapılmıştır. Çalışma için mevcut bir bina DesignBuilder bina enerji simülasyon programı ile modellenmiştir. Model üzerinde ısıtma sistemine entegre edilecek en uygun güneş kolektörü sayısı ve sıcak su deposu kapasitesinin belirlenmesi için senaryolar oluşturulmuştur. Oluşturulan senaryoların birincil enerji tüketimleri, global maliyetleri ve geri ödeme süreleri parametrik analiz ile elde edilmiştir. Elde edilen sonuçlara göre birincil enerji tüketimini en çok düşüren çözüm SYS20, global maliyeti en çok düşüren çözüm SYS1 ve optimum çözüm ise SYS7 olmuştur. Geri ödeme süreleri göz önüne alındığında ise SYS1 en kısa geri ödeme süresine sahip çözüm olduğu için çalışmada uygulanabilecek en uygun çözüm olarak belirlenmiştir. Çalışma sonunda ısıtma sistemlerine güneş enerjisi desteğiyle %47’ye varan birincil enerji tasarrufu elde edilebileceği görülmüştür. Çalışma ile Isparta ve benzeri iklime sahip illerde güneş kolektörü sayısı ve su tankı kapasite seçimi referans bir kaynak oluşturulmuştur.

Parametric analysis for the determination of solar collector and hot water tank capacity in solar-assisted heating systems

In this study, a study was carried out on integrating solar assisted systems into heating systems in a building. For the study, an existing building was modeled with the DesignBuilder building energy simulation program. The scenarios were created on the model to determine the number of solar collectors and the capacity of the water tank used in solar assisted heating systems. The primary energy consumption, global costs and payback periods of the scenarios created were obtained by parametric analysis. According to the results obtained, the solution that reduces primary energy consumption the most is SYS20, the solution that reduces the global cost the most is SYS1 and the optimum solution is SYS7. Considering the payback periods, SYS1 was determined as the most appropriate solution to be applied in the study since it was the solution with the minimum payback period. At the end of the study, it was seen that primary energy savings could be reduced by up to 47% with solar energy assisted heating system. Thanks to the study, a reference source for the number of solar collectors and water tank capacity selection in Isparta and provinces with similar climates has been created.

___

  • EPBD recast. Directive 2010/31/EU of the European Parliament and of Council of 19 May 2010 on the energy performance of buildings (recast); Official Journal of the European Union, 2010.
  • International Energy Agency (IEA). Technology Roadmap: Energy Efficient Building Envelopes, Technology Roadmap Series, 2013.
  • International Energy Agency (IEA). Solar Heating & Cooling Programme Solar and Heat Pump Systems, Task 44, 2013.
  • Lerch W, Heinz A, Heimrath R. Direct use of solar energy as heat source for a heat pump incomparison to a conventional parallel solar air heat pump system. Energy and Buildings, 100, 34-41, 2015.
  • Mustafaraj G, Marini D, Costa A, Keane M. Model calibration for building energy efficiency simulation. Applied Energy, 130, 72-85, 2014.
  • Kalfa Maçka S, Haydaraslan E, Sümer Haydaraslan K, Yaşar Y. Getting buildings closer to the nearly zero-energy buildings by changes in heating and cooling system: The case of Izmir, the 5 th International Conference on Architecture and Built Environment with AWARDs, Venedik, İtalya, 22-24 May 2018.
  • Ge Y, Han J, Ma Q, Feng J. Optimal configuration, and operation analysis of solar-assisted natural gas distributed energy system with energy storage. Energy, 246, 123429, 2022.
  • Jia S, Shan S, Zhang F, Liu B, Zhang Q, Zhijun Z. Parametrical analysis of a novel CHP system based on solar gas assisted thermo-photovoltaic device. Energy Conversion and Management, 271, 116316, 2022.
  • Li J, Wei S, Dong Y, Liu X, Novakovic V. Technical and economic performance study on winter heating system of air source heat pump assisted solar evacuated tube water heater. Applied Thermal Engineering, 221, 119851, 2023.
  • Yang LW, Xu RJ, Zhou WB, Li Y, Yang T, Wang HS. Investigation of solar assisted air source heat pump heating system integrating compound parabolic concentrator capillary tube solar collectors. Energy Conversion and Management, 277 116607, 2023.
  • Turkish State Meteorological Service. Meteorological data (1929 – 2016), 2018.
  • EnergyPlus. https://www.energyplus.net/documentation (Accessed: 5.11.2022).
  • Haydaraslan E. Faz değiştiren malzeme içeren duvar bloklarının içyapı formlarının Türkiye’deki İklim Bölgeleri için Belirlenmesi. Doktora Tezi, Karadeniz Teknik Üniversitesi, Trabzon, Türkiye, 2022.
  • Central Bank. https://www.tcmb.gov.tr (Accessed:10.06.2021).
  • TSE Turkish Standards Institution. Thermal Insulation Requirements for Buildings, TS 825, Ankara, Turkey, 2008.
  • ASHRAE Standart 55, Thermal Environmental Conditions for Human Occupancy, American Society of Heating, Refrigerating and Air-Conditioning Engineers, ISSN 1041-2336, 2010.
  • Sümer Haydaraslan, K ve Yaşar, Y, Bina iç mekân sıcaklıklarının kullanıcı davranışına göre değişiminin enerji tüketimine etkisi, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(3), 1217-22, 2018.
  • Demirdöküm. https://www.demirdokum.com.tr (Accessed: 15.02.2023).
  • Eca. https://www.eca.com.tr/ (Accessed: 16.02.2023).
  • Eykom. https://www.eykom.com/ (Accessed: 17.02.2023).
  • Wilo. https://wilo.com (Accessed: 17.02.2023).