Nano-malzemelerin geopolimer betonun termal davranışlarına etkisi

Bu araştırma kapsamında geopolimer beton karışımında kullanılan nano-malzemeler ve bu malzemelerin geopolimer betonun termal davranışları üzerine etkileri konusunda yapılan çalışmalar incelenmiş ve özetlenmiştir. Geopolimer çevre dostu, ekonomik ve dayanıklı bir malzemedir. Son yıllarda, geopolimer betonun termal davranışları üzerinde yapılan çalışmalar artmaktadır. Yapılan çalışmalarda geopolimer betonun termal davranışlarını geliştirmek amacıyla geopolimer beton karışımlarda çeşitli nano-malzemeler kullanılmıştır. Bu nano-malzemelerin bazıları endüstriyel atık malzemesidir. Bu malzemeler geopolimer karışımlarda kullanıldığı için bu malzemelerin depolanma sorunu ve bu malzemelerden kaynaklı oluşacak çevre sorunlarının çözümüne katkı sağlamaktadır. Geopolimerde kullanılan nano-malzemenin türü, kullanım oranı, kürleme şartları, maruz kaldığı sıcaklık derecesi ve maruz kalma süresi geopolimerin termal davranışını etkilemektedir. Yapılan çalışmalarda genellikle kullanılan bu nano-malzemelerin geopolimer betonun termal davranışlarını geliştirdiği tespit edilmiştir.

The Effects of nanomaterials on the thermal behavior of geopolymer concrete

Within the scope of this research, studies on nano-materials used in geopolymer concrete mixtures and their effects on the thermal behavior of geopolymer concrete are reviewed and summarized. Geopolymer is an environmentally friendly, economical and durable material. In recent years, studies on the thermal behavior of geopolymer concrete have been increasing. In these studies, various nano-materials were used in the geopolymer concrete matrix to improve the thermal behavior of geopolymer concrete. In addition, some of these nano-materials are industrial waste materials. Since these materials are used in geopolymer mixtures, it contributes to the solution of the storage problem of materials and environmental problems that may arise from these materials. The type of nano-material used in the geopolymer, its ratio, curing conditions, temperature and exposure time affect the thermal behavior of the geopolymer. In the studies conducted, it has been determined that these nano-materials generally improve the thermal behavior of geopolymer concrete.

___

  • Javeed M.A., Kumar M.V., Narendra H. Studies on Mix Design of Sustainable Geo-Polymer Concrete. International Journal of Innovative Research in Engineering & Management (IJIREM). ISSN: 2350-0557, Volume-2, Issue-4, 2015.
  • Karthik, A; Sudalaimani, K; Kumar V., C.T. Investigation on mechanical properties of fly ash-ground granulated blast furnace slag based self curing bio-geopolymer concrete. Construction and Building Materials, Volume: 149, pages 338-349, 2017.
  • Bernal S.A., Rodrı´guez E.D., Gutie´rrez R.M., Gordillo M., Provis J.L. Mechanical and thermal characterisation of geopolymers based on silicate-activated metakaolin/slag blends. Journal of Materials Science, volume 46, pages5477–5486, 2011.
  • Davidovits J. Geopolymers and geopolymeric materials. Journal of thermal analysis volume 35, pages429–441, 1989.
  • Duxson P., Provis J.L., Lukey G.C., van Deventer J.S.J. The role of inorganic polymer technology in the development of ‘green concrete’. Cement and Concrete Research, 37 1590–1597, 2007.
  • Hemn U. A., Azad A. M., Ahmed S. M. The role of nanomaterials in geopolymer concrete composites: A state-of-the-art review. Journal of Building Engineering, Volume 49, 15 May 2022. https://doi.org/10.1016/j.jobe.2022.104062
  • Ahmed M.F., Nuruddin M.F., Shafiq N. Compressive Strength and Workability Characteristics of Low-Calcium Fly ash-based Self-Compacting Geopolymer Concrete. World Academy of Science, Engineering and Technology International Journal of Civil and Environmental Engineering Vol:5, No:2, 2011.
  • Najim K.B., Hall M.R. A review of the fresh/hardened properties and applications for plain- (PRC) and self-compacting rubberised concrete (SCRC). Construction and Building Materials, Vol 24, 2043–2051, 2010.
  • Xie J., Wang J., Rao R., Wang C., Fang C. Effects of combined usage of GGBS and fly ash on workability and mechanical properties of alkali activated geopolymer concrete with recycled aggregate. Compos. Part B Eng. 164,179–190 2019.
  • Noushini A., Aslani F., Castel A., Gilbert R.I., Uy B., Foster S. Compressive stress-strain model for low-calcium fly ash-based geopolymer and heat-cured Portland cement concrete. Cem. Concr. Compos., 73, 136–146, 2016.
  • Kurtoğlu A.E., Alzeebaree R., Aljumaili O., Niş A., Gülşan M.E., Humur G., Çevik A. Mechanical and durability properties of fly ash and slag based geopolymer concrete. Adv. Concr. Constr. 6, 2018. https://doi.org/10.12989/acc.2018.6.4.345
  • Zhang P., Zheng Y., Wang K., Zhang J. A review on properties of fresh and hardened geopolymer mortar. Compos. Part B Eng. 152, 79–95, 2018.
  • Khaloo A., Raisi E.M., Hosseini P., Tahsiri H.. Mechanical performance of self-compacting concrete reinforced with steel fibers. Constr. Build. Mater.,51,179–186,2014. https://doi.org/10.1016/j.conbuildmat.2013.10.054
  • Ravitheja A., Kumar N.L.N.K. A study on the effect of nano clay and GGBS on the strength properties of fly ash based geopolymers. Volume 19, Part-2,Pages:273-276,2019. https://doi.org/10.1016/j.matpr.2019.06.761
  • Bharat B.J., Rahul S. The effect of nanomaterials on properties of geopolymers derived from industrial by-products: A state-of-the-art review. Construction and Building Materials, Volume:252,119028,2020. https://doi.org/10.1016/j.conbuildmat.2020.119028
  • Mehrzad M. Nano Silica and Micro Silica Effect on Mechanical Attributes of Ferrochrome Slag Based Geopolymer. Düzce University Journal of Science & Technology, 8, 347-362, 2020. https://doi.org/10.29130/dubited.587321
  • Jian H. Synthesis and Characterization of Geopolymers for Infrastructural Applications. PhD. Thesis, The Department of Civil and Environmental Engineering, Louisiana State University, Louisiana, USA, 2012.
  • Wang Y., Zhang Y., Xu D. Study on alkali-activated silica fume and fly ash based geopolymer. Bull Chin Ceramic Soc.;30(1):50–4, 2011.
  • Szostak B., Golewski G.L. Effect of Nano Admixture of CSH on selected strength parameters of concrete including fly ash. IOP Conference Series: Materials Science and Engineering; p. 416012105 (6pp.), 2018.
  • Fu Q., Xu W., Zhao X., Bu M., Yuan Q., Niu D. The microstructure and durability of fly ash-based geopolymer concrete: a review. Ceram Int.;47(21):29550–66, 2021.
  • Catauro M, Tranquillo E., Barrino F., Dal P.G., Blanco I., Cicala G., et al. Mechanical and thermal properties of fly ash filled geopolymers. Therm Anal Calorim.;138(5):3267, 2019.
  • Xiao Y.Z., Chen L., Komarneni S., Zhou C.H., Tong D.S., Yang H.M., Yu W.H., Wang H. Fly ash-based geopolymer: clean production, properties and applications. Journal of Cleaner Production, Vol: 125, Pages 253-267, 2016. https://doi.org/10.1016/j.jclepro.2016.03.019
  • Gümüş A. Geopolimer Beton Özelliklerine Termal Kür Prosesinin Etkisi. Yüksek Lisans Tezi, Afyon Kocatepe Üniversitesi, Fen Bilimleri Enstitüsü, İnşaat Mühendisliği Anabilim Dalı, Afyon, Turkey, 2016.
  • Duxson P., Provis J.L., Lukey G.C., Mallicoat S.W., Kriven W.M., Van Deventer J.S.J. Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids Surf, A 269(1–3):47–58, 2005. https://doi.org/10.1016/j.colsurfa.2005.06.060
  • Rowles M., O’Connor B. Chemical optimisation of the com pressive strength of aluminosilicate geopolymers synthesised by sodium silicate activation of metakaolinite. J Mater Chem., 2003. https://doi.org/10.1039/b212629j
  • Stevenson M., Sagoe-Crentsil K. Relationship between composition, structure and strength of inorganic polymers: part 1—metakaolin-derived inorganic polymers. J Mater Sci 40(8):2023–2036, 2005.
  • Jindal B. B., Alomayri T., Assaedi H., Cyriaque R.K. Geopolymer concrete with metakaolin for sustainability: a comprehensive review on raw material’s properties, synthesis, performance, and potential application. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-021-17849-w
  • Khater H.M., Gharieb M. Synergetic effect of nano-silica fume for enhancing physico-mechanical properties and thermal behavior of MK-geopolymer composites. Constr. Build. Mater., Vol:350, 128879,2022. https://doi.org/10.1016/j.conbuildmat.2022.128879
  • Alaa M.R., Ahmed S.O. Thermal resistance of alkali-activated metakaolin pastes containing nano-silica particles. Journal of Thermal Analysis and Calorimetry,136:609–620,2019. https://doi.org/10.1007/s10973-018-7657-1
  • Gao K., Lin K.-L., Wang D., Hwang C.-L., Tuan B.L.A., Shiu H.-S., Cheng T.-W. Effect of nano-SiO2 on the alkali-activated characteristics of metakaolin-based geopolymers. Construction and Building Materials, 48, 441–447, 2013.
  • Zidi Z., Ltifi M., Zafar I. Characterization of Nano-Silica Local Metakaolin Based-Geopolymer: Microstructure and Mechanical Properties. Open Journal of Civil Engineering, 10, 143-161, 2020. https://doi.org/10.4236/ojce.2020.102013
  • Zawrah M.F., Abo Sawan S.E., Khattab R.M., Abdel-Shaf A.A. Effect of nano sand on the properties of metakaolin-based geopolymer: Study on its low rate sintering. Construction and Building Materials, Vol: 246,118486,2020. https://doi.org/10.1016/j.conbuildmat.2020.118486
  • Revathi T., Jeyalakshmi R., Rajamane N.P. Study on the role of n-SiO2 incorporation in thermo-mechanical and microstructural properties of ambient cured FA-GGBS geopolymer matrix. Applied Surface Science, Volume 449, Pages 322-331, 2018. https://doi.org/10.1016/j.apsusc.2018.01.281
  • Assaedi H., Shaikh F.U.A., I.M. Low. Effect of nano-clay on mechanical and thermal properties of geopolymer. Journal of Asian Ceramic Societies 4, 19–28,2016. https://doi.org/10.1016/j.jascer.2015.10.004
  • Khater H.M., El-Sabbagh B.A., Fanny M., Ezzat M., Lottfy M. and El Nagar A.M. Effect of Nano-Clay on Alkali Activated WaterCooled Slag Geopolymer. British Journal of Applied Science & Technology, 3(4): 764-776, 2013.
  • Zidi Z., Ltifib M., Ayadi Z.B., El Mir L. and Nóvoa X.R. Effect of nano-ZnO on mechanical and thermal properties of geopolymer. Journal of Asian Ceramic Societies, Vol. 8, No. 1, 1–9, 2020. https://doi.org/10.1080/21870764.2019.1693682
  • Wang Y., Xu M., Zhao J., Xin A. Nano-ZnO modified geopolymer composite coatings for flame-retarding plywood. Construction and Building Materials, 338, 127649, 2022. https://doi.org/10.1016/j.conbuildmat.2022.127649
  • Sivasakthi M., Jeyalakshmi R., and Rajamane N.P. Investigation of Microstructure and Thermomechanical Properties of Nano-TiO2 Admixed Geopolymer for Thermal Resistance Applications. JMEPEG, 30:3642–3653, 2021. https://doi.org/10.1007/s11665-021-05708-1
  • Zidi Z., Ltifi M., Ayadi Z.B. & El Mir L. Synthesis of nano-alumina and their effect on structure, mechanical and thermal properties of geopolymer. Journal of Asian Ceramic Societies, Vol. 7, No. 4, 524–535,2019. https://doi.org/10.1080/21870764.2019.1676498
  • El Nagar AM, Khater HM. Development of High Thermal Stability Geopolymer Composites Enhanced by Nano Metakaolin. J. Build. Mater. Struct. 6: 10-19, 2019. DOI : 10.5281/zenodo.2604753
  • Zhang M.-H., Islam J., Peethamparan S. Use of nano-silica to increase early strength and reduce setting time of concretes with high volumes of slag. Cem. Concr. Compos.;34:650–662, 2012. doi:10.1016/j.cemconcomp.2012.02.005
  • Aggarwal P., Singh R.P., Aggarwal Y. Use of nano-silica in cement based materials—A review. Cogent Eng.;2:1078018, 2015. doi: 10.1080/23311916.2015.1078018
  • Quercia G., Hüsken G., Brouwers H.J.H. Water demand of amorphous nano silica and its impact on the workability of cement paste. Cem. Concr. Res.;42:344–357, 2012. doi: 10.1016/j.cemconres.2011.10.008.
  • Givi A.N., Rashid S.A., Aziz F.N.A., Salleh M.A.M. Experimental investigation of the size effects of SiO2 nano-particles on the mechanical properties of binary blended concrete. Compos. Part B Eng.;41:673–677, 2010. doi: 10.1016/j.compositesb.2010.08.003.
  • Ibrahim M., Johari M.A.M., Maslehuddin M., Rahman M.K. Influence of nano-SiO2 on the strength and microstructure of natural pozzolan based alkali activated concrete. Constr. Build. Mater.;173:573–585, 2018. doi: 10.1016/j.conbuildmat.2018.04.051.
  • Fatheali A.S., Sharanabasava V.G., Veerabhadragouda B.P., Khan T.Y., Almakayeel N. M. and Alghamdi S. Review on the Relationship between Nano Modifications of Geopolymer Concrete and Their Structural Characteristics. Polymers, 14, 1421, 2022. https://doi.org/10.3390/polym14071421
  • Zheng Z, Mounsamy M, Lauth-de Viguerie N, et al. Luminescent zinc oxide nanoparticles: from stabilization to slow digestion depending on the nature of polymer coating. Polym Chem.;10:145–154, 2019.
  • Ponnamma D, Cabibihan -J-J, Rajan M, et al. Synthesis, optimization and applications of ZnO/polymer nanocomposites. Mater Sci Eng C.;98:1210–1240, 2019.
  • Chakradhara R. M., Nikhil K. V., Shailendra Kumar. Critical review on fly-ash based geopolymer concrete. Structure Concrete, Volume21, Issue3, 1013-1028, https://doi.org/10.1002/suco.201900326
  • Adak D., Sarkar M., Mandal S. Effect of nano-silica on strength and durability of fly ash based geopolymer mortar. Construction and Building Materials, Vol:70, Pages:453-459. https://doi.org/10.1016/j.conbuildmat.2014.07.093
  • José S. M., Belén C., Jesús S., Ramón T. Metakaolin-Nanosilver as Biocide Agent in Geopolymer. https://doi.org/10.1002/9781118217542.ch1
  • Sofi M., Deventer J.S.J.van, Mendis P.A., Lukey G.C. Engineering properties of inorganic polymer concretes (IPCs). Cement and Concrete Research, Volume 37, Issue 2, Pages 251-257. https://doi.org/10.1016/j.cemconres.2006.10.008
  • Wefers K. Alumina chemicals: science and technology handbook, Am. Ceram. Soc. Westerville, Ohio, USA. 13, 1990.
  • Reid C.B., Forrester J.S., Goodshaw H.J., Kisi E.H., Suaning G.J. A study in themechanical milling of alumina powder. Ceram. Int., 34, 1551–1556, 2008. https://doi.org/10.1016/j.ceramint.2007.05.003
  • Behfarnia K., Salemi N. The effects of nano-silica and nano-alumina on frost resistance of normal concrete. Constr. Build. Mater., 48, 580–584, 2013. https://doi.org/10.1016/j.conbuildmat.2013.07.088
  • Jo B.W., Kim C.H., Tae G., Park J.B. Characteristics of cement mortar with nano-SiO2 particles. Constr. Build. Mater., 21, 1351–1355, 2007. https://doi.org/10.1016/j.conbuildmat.2005.12.020
  • Li W., Li X., Chen S.J., Long G., Liu Y.M., Duan W.H.. Effects of nanoalumina and graphene oxide on early-age hydration and mechanical properties of cementpaste. J. Mater. Civ. Eng., 29, 4017087, 2017. https://doi.org/10.1061/(asce)mt.1943-5533.0001926
  • Li Z., Wang H., He S., Lu Y., Wang M. Investigations on the preparation and mechanical properties of the nano-alumina reinforced cement composite. Mater. Lett., 60, 356–359, 2006 https://doi.org/10.1016/j.matlet.2005.08.061
  • Belver C., Vicente M.A. Porous Silica Gel by Acid Leaching of metakaolin. Materials Syntheses, Springer, Vienna, pp. 47–51, 2008.
  • Abo-El-Enein S.A., Heikal M., Amin M.S., et al. Reactivity of dealuminated kaolin and burnt kaolin using cement kiln dust or hydrated lime as activators. Construct. Build. Mater., 47, 1451–1460, . 2013.
  • El-Gamal S.M.A., Amin M.S., Ramadan M. Hydration characteristics and compressive strength of hardened cement pastes containing nano-metakaolin. HBRC J., 13, (1), 144-121, 2017.
  • Sayanam R.A., Kalsotra A.K., Mehta S.K., et al. Studies on thermal transformations and pozzolanic activities of clay from Jammu region (India). J.Therm. Anal., 35, (1), 99–106, 1989.
  • Chen C.Y., Tuan W.H.. Evolution of mullite texture on firing tape-cast kaolin bodies. J. Am. Ceram. Soc., 85, (5), 1121–1126, 2002.
  • Berodier E., Scrivener K.. Impact of Filler on Hydration kinetics. 32nd Cement and Concrete Science Conference. Queen’s University Belfast, pp. 1–4, 2012.
  • Sabir B.B., Wild S., Bai J. Metakaolin and calcined clays as pozzolans for concrete: a review. Cement Concr. Compos., 23, (6), 441–454, 2001.
  • Zhang D., Zhou C.H., Lin C.X., et al. Synthesis of clay minerals. Appl. Clay Sci., 50, (1), 1–11, 2010.
  • Peng Zhang, Yuanxun Zheng, Kejin Wang, Jinping Zhang, A review on properties of fresh and hardened geopolymer mortar, Composites B, Eng. 152 (2018) 79–95.
  • C.Y. Heah, H. Kamarudin, A.M. Mustafa Al Bakri, M. Bnhussain, M. Luqman, I. Khairul Nizar, Study on solids-to-liquid and alkaline activator ratios on kaolin based geopolymers, Constr. Build. Mater. 35 (2012) 912–922.
  • M. Sivasakthi, R. Jeyalakshmi, N.P.B. Rajamane, Rinu Joseb, Thermal and structural micro analysis of micro silica blended fly ash based geopolymer composites, J. Non-Cryst. Solids 499 (2018) 117–130.
  • Zaharaki D, Komnitsas K, Perdikatsis V. Use of analytical techniques for identification of inorganic polymer gel composition. J Mater Sci 2010;45:2715–24.