Güç sistemlerinde farklı güç sistemi kararlı kılıcısı modellerin sekonder gerilim kontrolü üzerindeki etkileri

Güç sistemleri hat kopması ve kısa devre gibi geçici durumlara karşı korunmasızdır. Kararsızlık problemlerini en kısa süre içerisinde ortadan kaldırmak için çeşitli modeller kullanılmaktadır. Özellikle de senkron generatör denetleyici kısımlarında Güç Sistemi Kararlı Kılıcısı (GSKK) yaygın olarak kullanılmaktadır. Bu çalışmada IEEE’nin 14 baralı sisteminde farklı GSKK modellerinin sekonder gerilim kontrolü ile beraber kullanılması ile geçici durum kararlılığı detaylı olarak incelenmiştir. Buna ek olarak, farklı GSKK modellerinin ve sekonder gerilim kontrolünün koordineli olarak çalışması için Otomatik Gerilim Regülatörü (OGR)’nin en uygun modeli ile beraber kullanımı düşünülmektedir. Merkezi alan kontrolü ve küme kontrolünden oluşan sekonder gerilim kontrolünün kullanımı için pilot bara belirlenmiş olup, senkron generatörde OGR ve GSKK modellerinin koordinasyon kontrolünün sağlanması amaçlanmıştır. Bu çalışma Güç Sistemleri Analizi Programı (PSAT) kullanılarak analiz edilmiştir. Farklı GSKK modellerinin kullanılması ile senkron generatör açısal hız değişimleri, bara gerilim profilleri ve senkron generatör aktif-reaktif güç değişimleri incelenmiştir. Yapılan çalışma sonucunda GSKK 2 modelinin diğer modellere göre kısa süre içerisinde sistem kararlılığını sağladığı ve salınımları azalttığı görülmüştür.

Effects on secondary voltage control of different power system stabilizer models in power systems

Power systems are vulnerable to transients such as line contingency and short circuit. Various models are used to eliminate instability problems as soon as possible. In particular, the Power System Stabilizer (PSS), which is one of the synchronous generator controller models, is widely used. In this study, the transient stability of IEEE's 14 bus system was investigated in detail by using different PSS models together with secondary voltage control. In addition, it is considered to use the Automatic Voltage Regulator (AVR) together with the most suitable model for the coordinated operation of different PSS models and secondary voltage control. The pilot bus has been determined for the use of secondary voltage control consisting of central area control and cluster control, and it is aimed to provide coordination control of AVR and PSS models in the synchronous generator. This study was analyzed using the Power Systems Analysis Program (PSAT). By using different PSS models, synchronous generator angular speed changes, bus voltage profiles, and synchronous generator active-reactive power changes were investigated. As a result of the study, it was seen that the PSS 2 model provided system stability and reduced oscillations in a short time compared to other models.

___

  • da Silva, R. J. G., De Souza, A. Z., Leme, R. C., & Sonoda, D. (2013). Decentralized secondary voltage control using voltage drop compensator among power plants. International Journal of Electrical Power & Energy Systems, 47, 61-68.
  • Mehrjerdi, H., Lefebvre, S., Saad, M., & Asber, D. (2012). A decentralized control of partitioned power networks for voltage regulation and prevention against disturbance propagation. IEEE Transactions on Power Systems, 28(2), 1461-1469.
  • Islam, S. R., Muttaqi, K. M., & Sutanto, D. (2014). A decentralized multiagent-based voltage control for catastrophic disturbances in a power system. IEEE Transactions on Industry Applications, 51(2), 1201-1214.
  • Flórez, J., Tapia, A., Criado, R., & Griajalba, J. M. (1994). Secondary voltage control based on a robust multivariable PI controller. International Journal of Electrical Power & Energy Systems, 16(3), 167-173.
  • Abdalla, O. H., Ghany, A. A., & Fayek, H. H. (2016, December). Coordinated PID secondary voltage control of a power system based on genetic algorithm. In 2016 Eighteenth International Middle East Power Systems Conference (MEPCON) (pp. 214-219). IEEE.
  • Lefebvre, H., Fragnier, D., Boussion, J. Y., Mallet, P., & Bulot, M. (2000, July). Secondary coordinated voltage control system: feedback of EDF. In 2000 Power Engineering Society Summer Meeting (Cat. No. 00CH37134) (Vol. 1, pp. 290-295). IEEE.
  • Paserba, J. J. (2002, July). Secondary voltage-VAr controls applied to static compensators (STATCOMs) for fast voltage control and long term VAr management. In IEEE Power Engineering Society Summer Meeting, (Vol. 2, pp. 753-761). IEEE.
  • Mehrjerdi, H., Lefebvre, S., & Saad, M. (2015). STATCOM application for decentralized secondary voltage control of transmission networks. In Static Compensators (STATCOMs) in Power Systems (pp. 531-556). Springer, Singapore.
  • Nguyen T.T.,&Nguyen, V.L. (2005, June) Application of wide-area network of phasor measurements for secondary voltage control in power systems with FACTS controllers. In IEEE Power Engineering Society General Meeting,2005 (pp.2927-2934).IEEE
  • Corsi, S., Pozzi, M., Sabelli, C., & Serrani, A. (2004). The coordinated automatic voltage control of the Italian transmission grid-part I: reasons of the choice and overview of the consolidated hierarchical system. IEEE Transactions on power systems, 19(4), 1723-1732.
  • Döşoğlu M. K., Demirbaş M., Duman S., (2022) Güç Sistemlerinde Farkli OGR Modellerinin Sekonder Gerilim Kontrolü Üzerindeki Etkileri. International Istanbul Congress of Multidisciplinary Scientific Research, pp. 62-68. Proceedings Book ISBN: 978-625-7464-91-8.
  • Güç sistemlerinde farklı PSS modelleri ve UPFC-POD ile küçük sinyal kararlılığının incelenmesi. Uluslararası Teknolojik Bilimler Dergisi, 14(1), 11-22. Hu B., Cañizares, C. A., & Liu, M. (2010, August). Secondary and Tertiary Voltage Regulation based on optimal power flows. In 2010 IREP Symposium Bulk Power System Dynamics and Control-VIII (IREP) (pp. 1-6). IEEE.
  • Hernandez, B., Canizares, C. A., Ramirez, J. M., Hu, B., & Liu, M. (2018, June). Secondary and tertiary voltage regulation controls based on regional optimal power flows. In 2018 Power Systems Computation Conference (PSCC) (pp. 1-7). IEEE.
  • El Moursi, M., Joos, G., & Abbey, C. (2008). A secondary voltage control strategy for transmission level interconnection of wind generation. IEEE Transactions on Power Electronics, 23(3), 1178-1190.
  • El‐Moursi, M. S. (2010). A novel line drop secondary voltage control algorithm for variable speed wind turbines. Wind Energy, 13(7), 633-655.
  • Tapia, G., Tapia, A., & Ostolaza, J. X. (2007). Proportional–integral regulator-based approach to wind farm reactive power management for secondary voltage control. IEEE Transactions on Energy Conversion, 22(2), 488-498.
  • Demirbaş M., Döşoğlu M. K. Güç sistemlerinde farklı PSS modelleri ve UPFC-POD ile küçük sinyal kararlılığının incelenmesi. Uluslararası Teknolojik Bilimler Dergisi, 14(1), 11-22.
  • Pillai, A. G., Thomas, P. C., Sreerenjini, K., Baby, S., Joseph, T., & Srecdharan, S. (2013, June). Transient stability analysis of wind integrated power systems with storage using central area controller. In 2013 Annual International Conference on Emerging Research Areas and 2013 International Conference on Microelectronics, Communications and Renewable Energy (pp. 1-5). IEEE.
  • Essallah S., Buallegue A., Khedher A., “Integration of Automatic Voltage Regulator and Power System Stabilizer: Small-Signal Stability in DFIG-Based Wind Farms,” J. Mod. Power Syst. Clean Energy, c. 7, sayı 5, ss. 1115–1128, 2019.
  • Sorrentino E., Leon F., “Comparison Among Typical Input Signals of Different Types of Power System Stabilizers (PSS),” in 2020 IEEE ANDESCON, ss. 1–6, 2020.
  • Ramos RA. Stability analysis of power systems considering AVR and PSS output limiters. International Journal of Electrical Power & Energy Systems, 31(4), 153-159, 2009.