Güç sistemlerinde farklı generatör denetleyici modelleri ile küçük sinyal kararlılığının incelenmesi

Çok makinalı güç sistemlerinin sürekli, ekonomik ve güvenilir olarak çalışmasında benzetim programları yardımı ile kararlılık analizleri incelenmektedir. Güç sistemlerinde en yaygın olarak yapılan kararlılık analizi küçük sinyal kararlılığıdır. Bu çalışmada çalışmasında 4 makinalı 2 alanlı test sisteminde farklı generatör denetleyici modelleri ile küçük sinyal kararlılığı analizi incelenmiştir. Farklı generatör denetleyici modelleri olarak Güç Sistem Kararlı Kılıcısı Denetleyicisi (GSKK), Otomatik Gerilim Regülatörü (OGR) ve Türbin Yöneticisi (TY) kullanılmıştır. Benzetim çalışması Güç Sistemleri Analiz Programı (PSAT)’da gerçekleştirilmiştir. Senkron generatörde denetleyicilerin olmadığı durum ile GSKK, OGR ve TY modellerinin olduğu durumların karşılaştırmaları yapılmıştır. Karşılaştırmalar şekiller ve tablolar halinde verilmiştir. Bu çalışmada GSKK, OGR ve TY modellerinin senkron generatörde kullanılması sistemin kısa süre içerisinde kararlı hale geldiği, parametrelerdeki salınımların azaldığı ve sistemin küçük sinyal kararlılığı açısından daha etkili sonuçlar verdiği görülmüştür.

Investigation of small signal stability with different generator controller models in power systems

Stability analyzes are examined with the help of simulation programs in the continuous, economical and reliable operation of multi-machine power systems. The most common stability analysis in power systems is small signal stability. In this study, small signal stability analysis was investigated with different generator controller models in a 4-machine 2-field test system. Power System Stabilizer (PSS), Automatic Voltage Regulator (AVR) and Turbine Governor (TG) are used as different generator controller models. The simulation study was carried out in the Power Systems Analysis Program (PSAT). Comparisons were made between the situation where there are no controllers in the synchronous generator and the situations with PSS, AVR and TG models. Comparisons are given in figures and tables. In this study, it was observed that the use of PSS, AVR and TG models in a synchronous generator stabilized the system in a short time, the oscillations in the parameters were reduced and the system gave more effective results in terms of small signal stability.

___

  • [1] Jia H, Yu X, Yu Y, Wang C. Power System Small Signal Stability Region with Time Delay, International Journal of Electrical Power and Energy Systems, 30(1), 16-22, 2008.
  • [2] Milano F. Small-Signal Stability Analysis of Large Power Systems with Inclusion of Multiple Delays, IEEE Transactions on Power Systems, 31(4), 3257-3266, 2015.
  • [3] Salim RH, Ramos RA. A Model-Based Approach for Small-Signal Stability Assessment of Unbalanced Power Systems, IEEE Transactions on Power Systems, 27(4), 2006-2014, 2012.
  • [4] Wang L, Semlyen A. Application of Sparse Eigenvalue Techniques to the Small Signal Stability Analysis of Large Power Systems, IEEE Transactions on Power Systems, 5(2), 635-642, 1990.
  • [5] Kundur P, Rogers GJ, Wong DY, Wang L, Lauby MG. A Comprehensive Computer Program Package for Small Signal Stability Analysis of Power Systems, IEEE Transactions on Power Systems, 5(4), 1076-1083, 1990.
  • [6] Rouco L, Perez-Arriaga IJ. Multi-area Analysis of Small Signal Stability in Large Electric Power Systems by SMA, IEEE Transactions on Power Systems, 8(3), 1257-1265, 1993.
  • [7] Wang X, Yao R, Rao F. Three-Step Impedance Criterion for Small-Signal Stability Analysis in Two-Stage DC Distributed Power Systems, IEEE Power Electronics Letters, 1(3), 83-87, 2003.
  • [8] Liu J, Feng X, Lee FC, Borojevich D. Stability margin monitoring for DC Distributed Power Systems Via Perturbation Approaches, IEEE Transactions on Power Electronics, 18(6), 1254-1261, 2003. [9] Amin M, Molinas M, Small-Signal Stability Assessment of Power Electronics Based Power Systems: A Discussion of Impedance-and Eigenvalue-Based Methods, IEEE Transactions on Industry Applications, 53(5), 5014-5030, 2017. [10] Angelidis G, Semlyen A. Improved Methodologies for The Calculation of Critical Eigenvalues in Small Signal Stability Analysis, IEEE Transactions on Power Systems, 11(3), 1209-1217, 1996.
  • [11] Liu Z, Yao W, Wen J. Enhancement of Power System Stability Using A Novel Power System Stabilizer with Large Critical Gain, Energies, 10(4), 449, 2017.
  • [12] Law KT, Hill DJ, Godfrey NR. Robust Controller Structure for Coordinated Power System Voltage Regulator and Stabilizer Design, IEEE Transactions on Control Systems Technology, 2(3), 220-232, 1994.
  • [13] Quinot H, Bourles H, Margotin T. Robust Coordinated AVR+ PSS for Damping Large Scale Power Systems, IEEE Transactions on Power Systems, 14(4), 1446-1451, 1999. [14] Essallah S, Bouallegue A, Khedher A. Integration of Automatic Voltage Regulator and Power System Stabilizer: Small-Signal Stability in DFIG-Based Wind Farms, Journal of Modern Power Systems and Clean Energy, 7(5), 1115-1128, 2019.
  • [15] Westinghouse G. Electrical Transmission and Distribution Reference, Westinghouse Electric & Manufacturing Company, 1942. [16] Milano F. An Open-Source Power System Analysis Toolbox, IEEE Transactions on Power systems, 20(3), 1199-1206, 2005.