Güç sistemlerinde çoklu SVC kullanımı ile statik gerilim kararlılığının iyileştirilmesi

Günümüzde Esnek AC İletim Sistemleri (FACTS) elemanları yük merkezlerinde yerel olarak reaktif güç desteği sağlamakta ve dolayısıyla bara gerilimleri güvenli çalışma sınırları içinde tutmaktadır. Özellikle de paralel FACTS cihazlarının tekli kullanımı yüklenme durumlarına göre sistemin güvenli çalışma durumlarını iyileştiremeyebilir. Bu yüzden paralel FACTS cihazlarının hem yüksek maliyetlerinden kaçınmak hem de sistemdeki uygun yerlerinin tespit edilmesi önemli bir konu olmaktadır. Bunun için paralel FACTS cihazlarından birisi olan Statik Var Kompanzatör (SVC) kullanılmaktadır. Bu çalışmada, 3 makinalı 9 baralı güç sisteminde SVC’nin farklı yük baralarında çoklu kullanılması ile çok makinalı sistemin maksimum yüklenme parametresi üzerindeki etkileri incelenmiştir. Dahası bara gerilim profilleri ve aktif-reaktif güç üzerindeki değişimleri detaylı olarak incelenmiştir. Bu çalışmada, üç analiz yöntemi kullanılmıştır. Bunlar SVC’nin olmadığı durum, SVC’nin tekli kullanıldığı durum ve SVC’nin çoklu kullanıldığı durumlardır. Bu benzetim çalışması için Güç Sistemleri Analizi Programı (PSAT) tercih edilmiştir. Yapılan çalışma sonucunda çoklu SVC kullanımının diğerlerine göre maksimum yüklenme parametresi değerini arttırdığı, bara gerilim profillerini ve aktif-reaktif güç değişimlerini iyileştirdiği görülmüştür.

Enhancement of static voltage stability using multiple SVC in power systems

Today, Flexible AC Transmission Systems (FACTS) devices provide local reactive power support in load centers and keep bus voltages within safe operating limits. In particular, the single use of parallel FACTS devices may not improve the safe operating conditions of the system depending on the load conditions. Therefore, avoiding parallel FACTS devices' high costs is crucial and determining their optimal places in the system. For this, Static Var Compensator (SVC), one of the parallel FACTS devices, is used. This study investigated the effects of multiple uses of SVC on different load buses on the maximum load parameter of the multi-machine system in a 3-machine 9-bus power system. Moreover, bus-voltage profiles and their changes in active-reactive power are studied in detail. In this study, three analysis methods were used. These are the no SVC, the single use of SVC, and the multiple uses of SVC. The Power Systems Analysis Program (PSAT) was preferred for this simulation study. As a result of the study, using multiple SVCs increases the maximum loading parameter value and improves the bus-voltage profiles and active-reactive power changes compared to others.

___

  • [1] Singh, B., & Agrawal, G. (2018). Enhancement of voltage profile by incorporation of SVC in power system networks by using optimal load flow method in MATLAB/Simulink environments. Energy Reports, 4, 418-434.
  • [2] Cong, L., Wang, Y., & Hill, D. J. (2005). Transient stability and voltage regulation enhancement via coordinated control of generator excitation and SVC. International Journal of Electrical Power & Energy Systems, 27(2), 121-130.
  • [3] Kumar, A., & Dubey, S. B. (2013). Enhancement of transient stability in transmission line using SVC facts controller. International Journal of Recent Technology and Engineering (IJRTE), 2(2).
  • [4] Cong, L., Wang, Y., & Hill, D. J. (2004). Co‐ordinated control design of generator excitation and SVC for transient stability and voltage regulation enhancement of multi‐machine power systems. International Journal of Robust and Nonlinear Control: IFAC‐Affiliated Journal, 14(9‐10), 789-805.
  • [5] Wang, Y., Tan, Y. L., & Guo, G. (2000). Robust nonlinear coordinated generator excitation and SVC control for power systems. International Journal of Electrical Power & Energy Systems, 22(3), 187-195.
  • [6] Bian, X. Y., Geng, Y., Lo, K. L., Fu, Y., & Zhou, Q. B. (2015). Coordination of PSSs and SVC damping controller to improve probabilistic small-signal stability of power system with wind farm integration. IEEE Transactions on Power Systems, 31(3), 2371-2382.
  • [7] Kamari, N. A. M., Musirin, I., & Ibrahim, A. A. (2020). Swarm intelligence approach for angle stability improvement of PSS and SVC-based SMIB. Journal of Electrical Engineering & Technology, 15(3), 1001-1014.
  • [8] Zhijun, E., Fang, D. Z., Chan, K. W., & Yuan, S. Q. (2009). Hybrid simulation of power systems with SVC dynamic phasor model. International Journal of Electrical Power & Energy Systems, 31(5), 175-180.
  • [9] Das, S., Chatterjee, D., & Goswami, S. K. (2018). Tuned‐TSC based SVC for reactive power compensation and harmonic reduction in unbalanced distribution system. IET Generation, Transmission & Distribution, 12(3), 571-585.
  • [10] Shawon, M. H., Hanzelka, Z., & Dziadecki, A. (2015, June). Voltage-current and harmonic characteristic analysis of different FC-TCR based SVC. In 2015 IEEE Eindhoven PowerTech (pp. 1-6). IEEE.
  • [11] Ambriz-Perez, H., Acha, E., & Fuerte-Esquivel, C. R. (2000). Advanced SVC models for Newton-Raphson load flow and Newton optimal power flow studies. IEEE transactions on power systems, 15(1), 129-136.
  • [12] Rao, B. V., Kumar, G. N., Priya, M. R., & Sobhan, P. V. S. (2009, December). Optimal power flow by Newton method for reduction of operating cost with SVC models. In 2009 International Conference on Advances in Computing, Control, and Telecommunication Technologies (pp. 468-470). IEEE.
  • [13] Kamarposhti, M. A., & Lesani, H. (2009). Effects of Parallel Facts Controllers On Staedy State Voltage Stability Margin. Trakia Journal of Sciences, 7(3), 81-90.
  • [14] Kamarposhti, M. A., & Alinezhad, M. (2010). Comparison of SVC and STATCOM in static voltage stability margin enhancement. system, 9, 1.
  • [15] Sode-Yome, A., & Mithulananthan, N. (2004). Comparison of shunt capacitor, SVC and STATCOM in static voltage stability margin enhancement. International Journal of Electrical Engineering Education, 41(2), 158-171.
  • [16] Canizares, C. A. (2002). Voltage stability assessment: concepts, practices and tools. IEEE/PES power system stability subcommittee special publication, (SP101PSS).
  • [17] Sode-Yome, A., Mithulananthan, N., & Lee, K. Y. (2006). A maximum loading margin method for static voltage stability in power systems. IEEE Transactions on Power Systems, 21(2), 799-808.
  • [18] Sode-Yome, A., Mithulananthan, N., & Lee, K. Y. (2007, June). A comprehensive comparison of FACTS devices for enhancing static voltage stability. In 2007 IEEE Power Engineering Society General Meeting (pp. 1-8). IEEE.
  • [19] Puneet Chawla, Balwinder Singh, “Voltage Stability Assessment and Enhancement Using STATCOM - A Case Study”, World Academy of Science, Engineering and Technology International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering Vol:7, No:12, 2013
  • [20] Kazemi, A. and Badrzadeh, B., ‘‘Modeling and Simulation of SVC and TCSC to Study Their Limits on Maximum Loadability Point’’, International Journal of Electrical Power & Energy Systems, Vol. 26, No. 8, 619-626, 2004
  • [21] Nwohu, M. N. (2009). Voltage stability improvement using static VAR compensator in power systems. Leonardo Journal of Sciences, 14, 167-172.