GELENEKSEL ASFALT BETON VE GENLEŞTİRİLMİŞ KİL AGREGA İLE ÜRETİLMİŞ HAFİF ASFALT BETONUN ÇOK YÖNLÜ KARŞILAŞTIRILMASI

Bu çalışmada kırma taş agrega (KTA) kullanılarak geleneksel olarak üretilmiş asfalt beton numuneler ve yapay bir hafif agrega olan genleştirilmiş kil agrega (GKA) ile üretilmiş hafif asfalt beton numuneler üzerinde çok yönlü incelemeler yapılarak bir takım özellikler karşılaştırılmıştır. Üretilen numuneler üzerinde öncelikle bazı fiziksel deneyler yapılmış ve her bir numunenin fiziksel özelliği tayin edilmiştir. Daha sonra tahribatlı ve tahribatsız bir takım deneyler ile numunelerin mekanik özellikleri belirlenmiştir. Tüm bu deneyler ve son olarak da malzeme kullanımı ve temini gibi durumlar göz önünde bulundurularak ekonomik, fiziksel ve mekanik özellikler karşılaştırılmış ve sonuçlar değerlendirilmiştir.

SOPHISTICATED COMPARISON OF LIGHT ASPHALT CONCRETE PRODUCED WITH CONVENTİONAL ASPHALT CONCRETE AND EXPANDED CLAY AGGREGATE

In this study, particular specifications have been compared as making sophisticated analysis on conventional asphalt concrete samples produced using crushed stone aggregate (CSA) and light asphalt concrete samples produced using expanded clay aggregate which is light aggregate (ECA). First some physical tests carried out on produced samples and physical specification of each sample has been determined. After then mechanical specifications of samples have been determined with destructive and non-destructive tests. All these tests and considering material usage and procurement economical, physical and mechanical specifications have been compared and evaluated results.

___

  • Aams, V., and S. C. Shah. (1974). Evaluation of Open-Graded Plan-Mix Seal Surfaces for Correction of Slippery Pavement. In Trasportation Research Record 523, TRB, National Research Council, Washington, D.C., pp.88-96.
  • Agostinacchio, M. Olita, S. (2004). Use Of Expanded Clay For High Grip Bituminous Wearing Courses - II° International Congress SIIV 2004, Florence, Italy.
  • Area, P. J., Jr., (1969). Expanded Clay Hot Mix Study, Final Report Part II, LDH Research Report No. 37,
  • Akbulut, H., Çetin, S., Gürer, C. (2009), Andezit Agregasının Sıcak Karışım Asfalt Kaplamalarında Kullanılabilirliğinin Araştırılması, 5. Uluslararası İleri Teknolojiler Sempozyumu (IATS’09), Karabük.
  • ASTM C 1018. (1992). Standard test methods for flexural thougness and first crack strength of fiber reinforced concrete (using beam with third point loading), American Society of Testing Materials, USA.
  • ASTM C127 – 07. (1992). Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Coarse Aggregate, Annual Book of ASTM Standards USA.
  • ASTM C131 – 06. (1992). Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine, Annual Book of ASTM Standards USA.
  • ASTM C117 – 04. (1992). Standard Test Method for Materials Finer than 75-μm (No. 200) Sieve in Mineral Aggregates by Washing, Annual Book of ASTM Standards USA.
  • ASTM C40 / C40M – 1. (1992). Standard Test Method for Organic Impurities in Fine Aggregates for Concrete, Annual Book of ASTM Standards USA.
  • ASTM C88 - 05 Standard Test Method for Soundness of Aggregates by Use of Sodium Sulfate or Magnesium Sulfate, Annual Book of ASTM Standards USA.
  • ASTM D5. (1992). Standard Test Method for Penetration of Bituminous Materials, Annual Book of ASTM Standards USA.
  • ASTM D70. (1992). Standard Test Method for Density of Semi-Solid Bituminous Materials (Pycnometer Method), Annual Book of ASTM Standards USA.
  • ASTM D36. (1992). Standard Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus), Annual Book of ASTM Standards USA.
  • ASTM D113. (1992). Standard Test Method for Ductility of Bituminous Materials, Annual Book of ASTM Standards USA.
  • ASTM D92. (1992). Standard Test Method for Flash and Fire Points by Cleveland Open Cup Tester, Annual Book of ASTM Standards USA.
  • ASTM D 1559–89. (1992). Standard Test Method for Resistance to Plastic Flow of Bituminous Mixtures Using Marshall Apparatus, Annual Book of ASTM Standards USA.
  • Canestrari, F., M. Bocci, G. Ferrotti, and E. Pasquini, (2007). Mechanical Characterization of Environmentally Friendly Mixtures. International Conference on Advanced Characterisation of Pavement and Soil Engineering Materials, Athens, Greece.
  • Cavaleri L, Miraglia N, Papia M (2008). Pumice concrete for structural wall panels. Engineering Structures. 25: 115-125.
  • Chadbourn, B. A., Skok,, E. L., Newcomb, D. E., Crow B. L., Spindle, S., The Effect of Voids in Mineral Aggregate (VMA) on Hot-Mix Asphalt Pavements, Minnesota Department of Transportation, Final Report, MN/RC - 2000-13, 1999.
  • Chen, W.F, and Richard Liew, J.Y., (2003). The Civil Engineering Handbook, New Directions in Civil Engineering, CRC Press.
  • General Directorate of Highways. (2006). State Highways Technical Specifications (KTŞ), Ankara, Turkey.
  • Gündüz L, Şapcı N, Bekar M (2006). Utilization of Expanded Clay As Lightweight Aggregate, J. Clay Sci. Technol. Kibited 1(2): 43-49.
  • Jansen, D.C., M.L. Kiggins, C. W. Swan, R. A. Malloy, M. G. Kashi, R. A. Chan, C. Javdekar, C. Siegal, and J. Weingram. (2001). Lightweight Fly Ash-Plastic Aggregates in Concrete. In Trasportation Research Record: Journal of the Transportation Research Board, No. 1775, TRB, National Research Council, Washington, D.C., pp.44-52.
  • Kalyoncuoğlu, S. F., and Tığdemir, M. (2004). An alternative approach for modelling and simulation of traffic data: Artificial neural Networks. Simulation Modeling Practice and Theory, 12(5), 351–362.
  • Lehmann, H. L., and V. Adam. (1956). Use of Expanded Clay Aggregate in Bituminous Construction. Highway Research Board Proceeding. Vol.38, pp. 398-407
  • Losa, M. Leandri, P. and Bacci, R. (2008a). Mechanical and Performance-Related Properties of Asphalt Mixes Containing Expanded Clay Aggregate, Transportation Research Record: Journal of the Transportation Research Board, No. 2051, Transportation Research Board of the National Academies, Washington, D.C., pp. 23–30.
  • Losa, M. Bacci, R. Leandri, P. Alfinito, L. Cerchiai, M. (2008b). Surface Characteristics of Asphalt Pavements with Synthetic Lightweight Aggregate, 6th Symposium on Pavement Surface Characteristics SURF 2008, Portoroz, Slovenia.
  • Özgan, E. (2011). Artificial Neural Network Based Modeling of the Marshall Stability of Asphalt Concrete. Expert Systems With Applications, 38, 6025-6030.
  • Sanders, S. R., Rath, D., Parker, F. (1994). Comparison of Nuclear and Core Pavement Density Measurements, Journal Of Transportation Engineering, Vol. 120, No. 6, pp 953-966.
  • Subaşı S. (2009a). The Effects of Using Fly Ash on High Strength Lightweight Concrete Produced with Expanded Clay Aggregate, Scientific Research and Essay Vol. 4 (4) pp. 275-288.
  • Tayfur, S., Eren, K., Özen, H., Yıldırım, S. A. (2003), Sıcak Asfalt Karışımı (BSK) Üretimi Açısından İstanbul Taşocaklarının Genel Değerlendirilmesi: Karşılaşılan Problemler ve Çözüm Önerileri, III Ulusal Kırmataş Sempozyumu, İstanbul.
  • Terzi, S. (2000), Mermer Toz Atıkların Asfalt Betonunda Filler Malzemesi Olarak Kullanılmasının Araştırılması, Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Y. Lisans Tezi, Isparta.
  • Tiğdemir, M., Karaşahin, M., and Şen., Z. (2002). Investigation of fatigue behaviour of asphalt concrete pavements with fuzzy logic approach. International Journal Fatigue, 24(8), 903–910.
  • Umar, F., Ağar, E., Pavement Structure, İstanbul Technical University Civil Engineering Faculty Press, İstanbul, 1991.
  • Uzun, İ., Terzi, S., Evaluation of andesite waste as mineral filler in asphaltic concrete mixture, Construction and
  • Building Materials 31 (2012) 284–288, 2012.