Sabit Yük Sürünme Test Cihazının Yeni Bir Tasarımı

Polimer malzemeler günümüzde evlerimizden endüstriye geniş bir alanda kullanılmaktadır. Bu nedenle polimer malzemelerin mekanik özelliklerinden sürünme eğrilerinin, polimerlerin doğru kullanımında önemli bir faktördür. Bu makale polimerlerin sürünme testlerini yapabilmek için mekatronik bir sistem olan sabit yüklü yeni bir sürünme test cihazı tasarımını sunar. Bir ana çerçeve üstüne, kelepçeler, makaralar, ağırlıklar ve çelik kablonun monte edilmesi ile düşük maliyetli bir sürünme test cihazı geliştirilmiştir. Ölçüm birimi ile çelik kablonun lineer hareketi algılanmış ve ortam sıcaklığı ile birlikte veri kayıt sistemi ile kaydedilmiştir. %15 kalsiyum karbonat takviyeli polipropilen numune ile testler yapılmıştır. Elde edilen deneysel verilerin standart bir sürünme testi eğrisi ile uyumlu olduğu gözlenmiştir. Bu bulgular sunulan sabit gerilmeli sürünme testi tasarımının verimli bir şekilde çalıştığını göstermektedir.

A Novel Design of Constant Load Creep Test Machine

Polymer materials have been used in a wide area from our homes to industry today. For this reason, creep curves from the mechanical properties of polymer materials are an important factor for the correct use of polymers. This article presents a new constant load creep test machine design which is a mechatronic system to perform creep testing of polymers. A low-cost creep test machine was developed by mounting clamps, pulleys, weights and steel cable on top of a main frame. With the measurement unit, the linear movement of the steel cable was detected and recorded with the data logging system together with the ambient temperature. Tests were made with a 15% calcium carbonate reinforced polypropylene specimen. It was observed that the experimental data obtained were compatible with a standard creep test curve. These findings confirm that the presented constant load creep test machine design works efficiently.

___

  • Asyraf, M. R. M., Ishak, M. R., Razman, M. R., & Chandrasekar, M. (2019). Fundamentals of creep, testing methods and development of test rig for the full-scale crossarm: A review. Jurnal Teknologi, 81(4), 155–164. https://doi.org/10.11113/jt.v81.13402
  • Asyraf, M. R. M., Ishak, M. R., Sapuan, S. M., Yidris, N., Shahroze, R. M., Johari, A. N., Rafidah, M., & Ilyas, R. A. (2020). Creep test rig for cantilever beam: fundamentals, prospects and present views. Journal of Mechanical Engineering and Sciences, 14(2), 6869–6887. https://doi.org/10.15282/jmes.14.2.2020.26.0538
  • Buratti, N., & Mazzotti, C. (2017). Creep Testing Methodologies and Results Interpretation. In Creep Behaviour in Cracked Sections of Fibre Reinforced Concrete (p. 1324). https://doi.org/10.1007/978-94-024-1001-3
  • Grishaber, R. B., Lu, R. H., Farkas, D. M., & Mukherjee, A. K. (1997). A novel computer controlled constant stress lever arm creep testing machine. Review of Scientific Instruments, 68(7), 2812–2817. https://doi.org/10.1063/1.1148200
  • Kelly, D. A. (1976). Problems In Creep Testing Under Biaxial Stress Systems. Journal of Strain Analysis, 11(1), 1–6.
  • Ravi, S., Laha, K., Sakthy, S., Mathew, M. D., & Jayakumar, T. (2014). Design of creep machine and creep specimen chamber for carrying out creep tests in flowing liquid sodium. Nuclear Engineering and Design, 267, 1–9. https://doi.org/10.1016/j.nucengdes.2013.10.020
  • Sun, N., & Frazier, C. E. (2007). Time/temperature equivalence in the dry wood creep response. Holzforschung, 61(6), 702–706. https://doi.org/10.1515/HF.2007.114
  • Taniguchi, Y., Ando, K., & Yamamoto, H. (2010). Determination of three-dimensional viscoelastic compliance in wood by tensile creep test. Journal of Wood Science, 56(1), 82–84. https://doi.org/10.1007/s10086-009-1069-6
  • Vanel, L., Ciliberto, S., Cortet, P. P., & Santucci, S. (2009). Time-dependent rupture and slow crack growth: Elastic and viscoplastic dynamics. Journal of Physics D: Applied Physics, 42(21). https://doi.org/10.1088/0022-3727/42/21/214007
  • Vicat, M. (1833). No Title. Ann. Chim. Phys., 54(36).
  • Vogel, S., & Papanicolaou, N., M. (1983). A constant stress creep testing machine. Journal of Biomechanics, 16(2), 153–156. https://doi.org/10.1016/0021-9290(83)90038-6
  • Zhang, Z., Yang, J. L., & Friedrich, K. (2004). Creep resistant polymeric nanocomposites. Polymer, 45(10), 3481–3485. https://doi.org/10.1016/j.polymer.2004.03.004