Araç lastiklerinde kord-kauçuk kompozit malzemelerin konstrüksiyon yapısı ve lastik davranışına etkisi

Günlük hayatımızda ulaşım başta olmak üzere birçok alanda lastik kullanılmaktadır. Kullanılan aracın özelliklerine bakılmaksızın araç lastiği emniyet açısından kritik bir öneme sahiptir. Dolayısıyla araç lastiğinin iç yapısı, konstrüksiyonu, lastik taban izi vb. parametrelerin analizinin doğru yapılarak lastiğin emniyetli ve verimli çalışması sağlanmalıdır. Lastiğin yapısı içerisinde yer alan kord ve elastomer malzemeler yük altında farklı mekanik gerinim özelliklerine sahiptirler. Oluşan gerinimin kordun mekanik özellikleri ve yapışma performansına etkisi yapılan çalışmalarla ispatlanmıştır. Bu derlemede, literatürdeki lastik iç yapısında temel bileşen olan kord-kauçuk yapısının mekanik özelliklerini belirlemek için yapılan deney ve çalışmalar incelenmiştir. Ayrıca kord kauçuk kompozit malzemesinin makro ve mezoskopik mekanik özellikleri ile ilgili yapılan çalışmalardan örnekler verilmiştir. Lastik yapısının analizi, sonlu elemanlar yöntemi ile lastik kordunun mekanik özellikleri, lastik davranışının yol şartlarında modellemesi, lastik basıncı değişikliği ile zemin teması üzerine çalışmalar incelenmiştir. İnceleme sonucunda, kord-kauçuk yapısı içinde yer alan malzemelerin mekanik özellikleri, malzeme yapısını analiz etmede kullanılan test yöntemleri, lastik yapısının modellenmesi, kord kauçuk yapışma analizi, kord gerinim analizi, lastik zemin ilişkisi konuları üzerine bir derleme yapılmıştır.

Cord-rubber composite materials in vehicle tires construction structure and its effect on tire behavior

In our daily life, tires are used in many areas, especially transportation. Regardless of the characteristics of the vehicle used, the vehicle tire has a critical importance in terms of safety. In order for the tire to work safety and efficiently, the internal structure of the tire, its construction, the tire footprint etc. The analysis of the parameters must be done correctly. The cord and elastomer materials in the tire structure have different mechanical strain properties under load. The effect of the resulting strain on the mechanical properties and adhesion performance of the cord has been proven by studies. In this study, the experimental and simulation studies to determine the mechanical properties of the cord-rubber structure, which is the main component in the tire inner structure, are mentioned. In addition, examples from the studies on the macro and mesoscopic mechanical properties of the cord rubber composite material are given. In the analysis of the tire structure, studies on the mechanical properties of the tire cord, the modeling of the tire behavior under road conditions, the change in tire inflation pressure and the ground contact were examined with the finite element method. As a result of the examination, a review was made on the mechanical properties of the materials in the cord-rubber structure, the test methods used to analyze the material structure, the modeling of the tire structure, the cord rubber adhesion analysis, the cord strain analysis, the tire-ground relationship.

___

  • Barry, C., Panerai, F., Bergeron, K., Stapleton, S. & Sherwood, J., (2020). Mesomechanical Modeling of Braided Cords. Procedia Manufacturing, 47 162-168.
  • Cao, S., Chen, Q., Wang, Y., Xuan, S., Jiang, W. & Gong, X., (2017). High Strain-Rate Dynamic Mechanical Properties of Kevlar Fabrics Impregnated with Shear Thickening Fluid. Composites Part A: Applied Science and Manufacturing, 100 161-169. 10.1016/j.compositesa.2017.04.015
  • Costa, C., Silva, F., Campilho, R., Neves, P., Godina, R. & Ferreira, S., (2019). Influence of Textile Cord Tension in Cap Ply Production. Procedia Manufacturing, 38 1766-1774.
  • Darwish, N., Lawandy, S., El-Shazly, S. A. & Abou-Kandil, A., (2000). Effect of Bonding Systems on the Adhesion of Nitrile Rubber to Nylon Cord. Polymer-Plastics Technology and Engineering, 39 (5): 793-806.
  • Dong, Y., Yao, X. & Xu, X., (2021). Cross Section Shape Optimization Design of Fabric Rubber Seal. Composite Structures, 256 10.1016/j.compstruct.2020.113047
  • Dong, Y., Yao, X., Yan, H., Yuan, L. & Yang, H., (2019). Macro- and Mesoscopic Mechanical Properties of Complex Fabric Rubber Composite under Different Temperatures. Composite Structures, 230 10.1016/j.compstruct.2019.111510
  • Farhadi, P., Golmohammadi, A., Sharifi Malvajerdi, A. & Shahgholi, G., (2020). Tire and Soil Effects on Power Loss: Measurement and Comparison with Finite Element Model Results. Journal of Terramechanics, 92 13-22. 10.1016/j.jterra.2020.09.004
  • García, J. M., García, F. C., Serna, F. & José, L., (2010). High-Performance Aromatic Polyamides. Progress in polymer science, 35 (5): 623-686.
  • Gupta, A., Pradhan, S. K., Bajpai, L. & Jain, V., (2021). Numerical Analysis of Rubber Tire/Rail Contact Behavior in Road Cum Rail Vehicle under Different Inflation Pressure Values Using Finite Element Method. Materials Today: Proceedings, 47 6628-6635. 10.1016/j.matpr.2021.05.100
  • Jong, L., (2019). Improved Mechanical Properties of Silica Reinforced Rubber with Natural Polymer. Polymer Testing, 79 10.1016/j.polymertesting.2019.106009
  • Judovits, L. (2020). Thermal Analysis of Aliphatic Nylon Fibers. In Thermal Analysis of Textiles and Fibers (pp. 223-245).
  • Kane, K., Jumel, J., Lallet, F., Mbiakop-Ngassa, A., Vacherand, J. M. & Shanahan, M. E. R., (2020). Experimental Study of the Rubber Cord Adhesion Inflation Test. Engineering Fracture Mechanics, 224 10.1016/j.engfracmech.2019.106783
  • Kane, K., Jumel, J., Mbiakop-Ngassa, A., Lallet, F., Vacherand, J.-M. & Shanahan, M. E., (2021a). Rubber Cord Adhesion Inflation Test: Effect of Constitutive Rubber Model on Evaluation of Gc. Engineering Fracture Mechanics, 244 107547.
  • Kane, K., Jumel, J., Mbiakop-Ngassa, A., Lallet, F., Vacherand, J.-M. & Shanahan, M. E. R., (2021b). Rubber Cord Adhesion Inflation Test: Effect of Constitutive Rubber Model on Evaluation of G. Engineering Fracture Mechanics, 244 10.1016/j.engfracmech.2021.107547
  • Korunović, N., Fragassa, C., Marinković, D., Vitković, N. & Trajanović, M., (2019a). Performance Evaluation of Cord Material Models Applied to Structural Analysis of Tires. Composite Structures, 224 111006.
  • Korunović, N., Fragassa, C., Marinković, D., Vitković, N. & Trajanović, M., (2019b). Performance Evaluation of Cord Material Models Applied to Structural Analysis of Tires. Composite Structures, 224 10.1016/j.compstruct.2019.111006
  • Lehmann, T. & Ihlemann, J., (2020). Strain Analysis of Cord-Rubber Composites Using Dic. Materials Today: Proceedings, 32 183-186. 10.1016/j.matpr.2020.04.537
  • Moisescu, A.-R., Anghelache, G. & Cristea, G., (2018). Investigation of Radial Modal Behaviour Using Finite Element Analysis for Truck Tyres without Road Contact. Procedia Manufacturing, 22 99-106.
  • Saha, S., Vineet, K., Bhowmick, A. K., Deuri, A. S. & Vaidya, D. M., (2021). Stubble Resistance of Rubber Vulcanizates: Influence of Short Fiber and Resin. Polymer Testing, 94 10.1016/j.polymertesting.2020.107048
  • Schjønning, P., Stettler, M., Keller, T., Lassen, P. & Lamandé, M., (2015). Predicted Tyre–Soil Interface Area and Vertical Stress Distribution Based on Loading Characteristics. Soil and Tillage Research, 152 52-66. 10.1016/j.still.2015.03.002
  • Sousa, S. P. B., Ribeiro, M. C. S., Cruz, E. M., Barrera, G. M. & Ferreira, A. J. M., (2017). Mechanical Behaviour Analysis of Polyester Polymer Mortars Reinforced with Tire Rubber Fibres. Ciência & Tecnologia dos Materiais, 29 (1): e162-e166. 10.1016/j.ctmat.2016.07.009
  • Su, B., Liu, S., Zhang, P., Wu, J. & Wang, Y., (2021a). Mechanical Properties and Failure Mechanism of Overlap Structure for Cord-Rubber Composite. Composite Structures, 274 114350.
  • Su, B., Liu, S., Zhang, P., Wu, J. & Wang, Y., (2021b). Mechanical Properties and Failure Mechanism of Overlap Structure for Cord-Rubber Composite. Composite Structures, 274 10.1016/j.compstruct.2021.114350
  • Tao, Y., Windslow, R., Stevens, C. A., Bilotti, E., Peijs, T. & Busfield, J. J. C., (2018). Development of a Novel Fatigue Test Method for Cord-Rubber Composites. Polymer Testing, 71 238-247. 10.1016/j.polymertesting.2018.09.001
  • ten Damme, L., Stettler, M., Pinet, F., Vervaet, P., Keller, T., Munkholm, L. J. & Lamandé, M., (2019). The Contribution of Tyre Evolution to the Reduction of Soil Compaction Risks. Soil and Tillage Research, 194 10.1016/j.still.2019.05.029
  • ten Damme, L., Stettler, M., Pinet, F., Vervaet, P., Keller, T., Munkholm, L. J. & Lamandé, M., (2020). Construction of Modern Wide, Low-Inflation Pressure Tyres Per Se Does Not Affect Soil Stress. Soil and Tillage Research, 204 10.1016/j.still.2020.104708
  • Tonatto, M. L. P., Forte, M. M. C. & Amico, S. C., (2017). Compressive-Tensile Fatigue Behavior of Cords/Rubber Composites. Polymer Testing, 61 185-190. 10.1016/j.polymertesting.2017.05.024
  • Yang, H., Yao, X.-F., Yan, H., Yuan, Y.-n., Dong, Y.-F. & Liu, Y.-H., (2018). Anisotropic Hyper-Viscoelastic Behaviors of Fabric Reinforced Rubber Composites. Composite Structures, 187 116-121. 10.1016/j.compstruct.2017.12.026
  • Zhao, Z., Mu, X. & Du, F., (2020a). Constitutive Model Research for Rubber-Cord Composites Used in Rubber Track. Materials Today Communications, 23 100937.
  • Zhao, Z., Mu, X. & Du, F., (2020b). Constitutive Model Research for Rubber-Cord Composites Used in Rubber Track. Materials Today Communications, 23 10.1016/j.mtcomm.2020.100937