Optimum PID Kazançları Genetik Algoritma İle Hesaplanan Otomatik Gerilim Regülatörü

Elektrik güç sistemlerinin en önemli parametrelerinden biri olan gerilim değerinin korunması modern güç sistemleri için hayati önem taşımaktadır. Otomatik gerilim regülatörleri güç sistemlerinde gerilim değerinin istenilen değerde korunmasını sağlarlar. Bu çalışmada otomatik gerilim regülatör sisteminde kontrolör yapısı olarak literatürde en yaygın kullanılan PID kontrolör yapısı kullanılmıştır. Bu çalışmada kontrolör parametre değerlerini ayarlamak için Genetik algoritma tekniği kullanılmıştır. Kullanılan tekniğin başarısı literatürde PID kontrolör kazanç değerlerini ayarlamada en yaygın kullanılan tekniklerden biri olan Ziegler-Nichols yöntemi ile karşılaştırılmıştır. Sunulan tekniğin başarısını göstermek için hem zaman domeni analiz yöntemleri hem de frekans domeni analiz yöntemleri bu çalışmada kullanılmıştır.

Automatic Voltage Regulator with Optimum PID Gains Calculated by Genetic Algorithm

Voltage level protection, which is one of the most important parameters of electrical power systems, is critical for modern power systems. Automatic voltage regulators make ensure that power systems' desired voltage level is maintained. The automatic voltage regulator system's controller structure in this study is based on the PID controller structure that has been utilized the most extensively in the literature. In this research, the controller parameter values are modified using a genetic algorithm technique. The Ziegler-Nichols approach, one of the most popular methods in the literature for modifying PID controller gain levels, is utilized to compare the effectiveness of the strategy used. Both time domain analysis methods and frequency domain analysis methods are employed in this study to show the effectiveness of the proposed strategy.

___

  • [1] I. Moschos and C. Parisses, "A novel optimal PIλDND2N2 controller using coyote optimization algorithm for an AVR system," Engineering Science and Technology, an International Journal, vol. 26, p. 100991, 2022.
  • [2] H. Gözde, M. C. Taplamacioğlu, and M. Ari, "Simulation study for global neighborhood algorithm based optimal automatic voltage regulator (AVR) system," in 2017 5th International Istanbul Smart Grid and Cities Congress and Fair (ICSG), 2017, pp. 46-50: IEEE.
  • [3] S. Chatterjee and V. Mukherjee, "PID controller for automatic voltage regulator using teaching–learning based optimization technique," International Journal of Electrical Power & Energy Systems, vol. 77, pp. 418-429, 2016.
  • [4] B. Yildirim and M. T. Gençoğlu, "Modal Analysis of Power System with a Microgrid," International Journal of Electrical and Computer Engineering, vol. 11, no. 10, pp. 1068-1073, 2017.
  • [5] B. YILDIRIM and M. T. GENÇOĞLU, "Impact of Microgrid on Power System Voltage Stability," integration, vol. 1, p. 2, 2017.
  • [6] B. YILDIRIM, "Investigation with modal analysis of effects of high PV penetration on power system voltage stability," International Journal of Energy and Smart Grid, vol. 2, no. 1, pp. 17-26, 2017.
  • [7] R. Shankar and P. Kundur, "Power system stability and control II," New York, McGraw-Hill Books pp581, 1994.
  • [8] A. M. Mosaad, A. Y. Abdelaziz, and M. A. Attia, "A Survey on Optimal Design of Controller for AVR Performance Enhancement," i-Manager's Journal on Instrumentation & Control Engineering, vol. 6, no. 1, p. 31, 2017.
  • [9] I. Eke, M. Saka, H. Gozde, Y. Arya, and M. C. Taplamacioglu, "Heuristic optimization based dynamic weighted state feedback approach for 2DOF PI-controller in automatic voltage regulator," Engineering Science and Technology, an International Journal, vol. 24, no. 4, pp. 899-910, 2021.
  • [10] E. Dembicki and T. Chi, "System analysis in calculation of cantilever retaining walls," International journal for numerical and analytical methods in geomechanics, vol. 13, no. 6, pp. 599-610, 1989.
  • [11] C. Balu and D. Maratukulam, Power system voltage stability. McGraw-Hill New York, NY, USA, 1994.
  • [12] M. Özdemir and V. Çelik, "Stability analysis of the automatic voltage regulation system with PI controller," Sakarya University Journal of Science, vol. 21, no. 4, pp. 698-705, 2017.
  • [13] Z.-L. Gaing, "A particle swarm optimization approach for optimum design of PID controller in AVR system," IEEE transactions on energy conversion, vol. 19, no. 2, pp. 384-391, 2004.
  • [14] D.-H. Kim and A. Abraham, "A hybrid genetic algorithm and bacterial foraging approach for global optimization and robust tuning of PID controller with disturbance rejection," in Hybrid evolutionary algorithms: Springer, 2007, pp. 171-199.
  • [15] V. Mukherjee and S. Ghoshal, "Intelligent particle swarm optimized fuzzy PID controller for AVR system," Electric Power Systems Research, vol. 77, no. 12, pp. 1689-1698, 2007.
  • [16] H. Zhu, L. Li, Y. Zhao, Y. Guo, and Y. Yang, "CAS algorithm-based optimum design of PID controller in AVR system," Chaos, Solitons & Fractals, vol. 42, no. 2, pp. 792-800, 2009.
  • [17] H. Gozde and M. C. Taplamacioglu, "Comparative performance analysis of artificial bee colony algorithm for automatic voltage regulator (AVR) system," Journal of the Franklin Institute, vol. 348, no. 8, pp. 1927-1946, 2011.
  • [18] S. Panda, B. K. Sahu, and P. K. Mohanty, "Design and performance analysis of PID controller for an automatic voltage regulator system using simplified particle swarm optimization," Journal of the Franklin Institute, vol. 349, no. 8, pp. 2609-2625, 2012.
  • [19] B. Güngör, N. OZTURK, Ö. Selim, and Ü. Kenan, "Otomatik gerilim regülatörü için hibrit bir denetleyici tasarımı," Politeknik Dergisi, pp. 1-1.
  • [20] E. Kılıç and M. T. Özdemir, "Güç sistemlerindeki optimum otomatik gerilim regülasyonu için çoklu amaç fonksiyonunun belirlenmesi," Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, vol. 10, no. 1, pp. 1-12, 2019.
  • [21] V. K. Munagala and R. K. Jatoth, "Improved fractional PIλDμ controller for AVR system using Chaotic Black Widow algorithm," Computers & Electrical Engineering, vol. 97, p. 107600, 2022.
  • [22] M. Zamani, M. Karimi-Ghartemani, N. Sadati, and M. Parniani, "Design of a fractional order PID controller for an AVR using particle swarm optimization," Control Engineering Practice, vol. 17, no. 12, pp. 1380-1387, 2009.
  • [23] B. Yildirim, M. T. ÖZDEMİR, and E. İbrahim, "Design of integer order approximation fractional order controller with for automatic voltage regulation system," in 2019 4th International conference on power electronics and their applications (ICPEA), 2019, pp. 1-6: Ieee.
  • [24] U. GÜVENÇ, A. H. IŞIK, T. YİĞİT, and I. Akkaya, "Performance analysis of biogeography-based optimization for automatic voltage regulator system," Turkish Journal of Electrical Engineering and Computer Sciences, vol. 24, no. 3, pp. 1150-1162, 2016.
  • [25] F. VATANSEVER and S. E. Deniz, "Genetik Algoritma Tabanlı PID Kontrolör Simülatörü Tasarımı," Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 18, no. 2, pp. 7-18, 2013.
  • [26] B. Yıldız, H. Çiftçi, O. Ayan, and B. E. Türkay, "Elektrikli Araçların Dağıtım Şebekesine Etkisinin Maliyet Analizi ve Genetik Algoritma ile Optimizasyonu Cost Analysis of the Effect of Electric Vehicles on Distribution Network and Optimization with Genetic Algorithm."
  • [27] A. G. Y. L. Şahin and A. G. A. N. Çoklar, "ÖĞRETİM YAZILIMLARININ TASARIMINDA GENETİK ALGORİTMALARIN KULLANILMASI."