Ergonomik Personel Görev Çizelgeleme Problemi: Çok Amaçlı Bir Kısıt Programlama Modeli ve Vaka Çalışması

Personel görev çizelgeleme problemi (PGÇP) firma amaçlarını ve teknolojik kısıtlarını dikkate alarak firma personellerine görev atanması problemidir. Ergonomik faktörler görevin yerine getirilmesi esnasında personeller üzerindeki yükün değerlendirilmesi için dikkate alınırlar. Personel verimliliğini artırmak isteyen işletmeler ergonomik risklerin azaltılması yönünde kararlar almaya zorlanmaktadır. Bunun yanı sıra personel giderleri üretim maliyetleri içerisinde önemli bir yer tutmaktadır. Gerek işçilik maliyetlerini düşürmek gerekse personel üretkenliğini artırmak için ergonomik risk faktörleri göz önünde bulundurularak PGÇP çözülmek zorundadır. Bu çalışmada ergonomik personel görev çizelgeleme problemi (EPGÇP) için bir kısıt programlama (KP) modeli önerilmiştir. Personel ergonomik risk skorlarının belirlenmesinde REBA metodu kullanılmıştır. Modelin amaç fonksiyonu, amaç programlama tabanlı olarak belirlenen ergonomik risk skorlarından sapmaların en küçüklenmesidir. Önerilen modelin performansı orta gerilim sigorta üretimi yapan bir firmadan alınan gerçek veriler ile değerlendirilmiştir. Sayısal test sonuçları literatürde PGÇP için çözüm önerisi sunan çalışmalar ile karşılaştırılmıştır. Sonuçlar önerilen KP modelinin problemin çözümünde etkin ve verimli olduğunu göstermiştir.

Ergonomic Personnel Task Scheduling Problem: A Multi-objective Constraint Programming Model and A Case Study

Personnel task scheduling problem (PTSP) is the problem of assigning tasks to personnel, taking into account firm objectives and technological constraints. Ergonomic factors are taken into account to assess the ergonomic risks on personnel while performing the task. Firms that want to increase personnel productivity are forced to make decisions to reduce ergonomic risks. In addition, personnel costs have an important place in production costs. To reduce labor costs and increase personnel productivity, PTSP has to solve by considering ergonomic risk factors. In this study, a constraint programming (CP) model is proposed for the ergonomic personnel task scheduling problem (EPTSP). REBA method is used to determine personnel ergonomic risk scores. The objective function of the model is to minimize the deviations from the ergonomic risk scores determined based on goal programming. The performance of the proposed model has been evaluated with real data obtained from a company that produces medium voltage fuses. Numerical results were compared with the results of studies in the literature that proposed a solution for PTSP. The results showed that the proposed CP model is effective and efficient in solving the problem.

___

  • Adem, A., & Dağdeviren, M. (2016). Ergonomik personel çizelgeleme konusu üzerinde bir literatür araştirmasi. Uluslararasi 16. Üretim Araştirmalari Sempozyumu, İstanbul Teknik Üniversitesi, 12-14 Ekim, 9-14, İstanbul, Türkiye.
  • Alakaş, H , Pınarbaşı, M , Sönmez, İ, & Yüksel, A. (2020). Ergonomic personnel-task scheduling problem: A medium voltage insurance production application. Journal of Turkish Operations Management, 4(2), 433-448.
  • Anzanello, M.J., Fogliatto, F.S. & Santos, L. (2014). Learning dependent job scheduling in mass customized scenarios considering ergonomic factors. Int. J. Production Economics, 154, 136–145.
  • Bedir, N., Eren, T., & Dizdar, E.N. (2017). Ergonomik Personel Çizelgeleme ve Perakende Sektöründe Bir Uygulama. Journal of Engineering Sciences and Design, 5(3), 657 - 674.
  • Boenzi, F., Digiesi, S., Mossa, G., Mummolo, G., & Romano, V.A. (2015). Modelling Workforce Aging in Job Rotation Problems. IFAC- PapersOnLine, 48(3), 604–609.
  • Carnahan, B., Redfern, M.S. & Norman, B. (2000). Designing safe job rotation schedules using optimization and heuristic search, Ergonomics, 43(4), 543-560.
  • Charnes, A. & Cooper, W.W. (1977). Goal programming and multiple objective optimizations: Part 1. European Journal Of Operational Research, 1(1), 39-54.
  • Cuesta-Asensio, S., Diego-Mas, J.A., Canós-Darós, L., & Andrés-Romano, C. (2012). A genetic algorithm for the design of job rotation schedules considering ergonomic and competence criteria. The International Journal of Advanced Manufacturing Technology, 60(9-12), 1161-1174.
  • De Silva, A. (2001). Combining constraint programming and linear programming on an example of bus driver scheduling. Annals of Operations Research, 108(1-4), 277-291.
  • Eren T., Özder E.H., Alakaş H.M., & Özcan E. (2019). Kısıt Programlama Yaklaşımıyla Güvenlik Personeli Çizelgeleme Probleminin Çözümü. Harran Üniversitesi Mühendislik Dergisi, 4(2), 16-25.
  • Gür, Ş., Eren, T., & Alakaş, H.M. (2019). Surgical Operation Scheduling with Goal Programming and Constraint Programming: A Case Study. Mathematics, 7, 251.
  • Hignett, S. & Mcatamney, L. (2000). Rapid entire body assessment (REBA). Applied ergonomics, 31(2), 201-205.
  • Kaçmaz, S., Alakaş, H., & Eren, T. (2020). Ergonomic Staff Scheduling Problem With Goal Programming In Glass Industry. Journal of Turkish Operations Management, 4(1), 369-377.
  • Kostreva, M., McNeli, E. & Clemens, E. (2002). Using a circadian rhythms model to evaluate shift schedules. Ergonomics, 45(11), 739-763.
  • Malladi, S. & Min, K. J. (2004). Workforce scheduling with costs and ergonomic considerations. Paper presented at the IIE Annual Conference, Institute of Industrial Engineers, May 15-19, 2004, Hilton Americas, Houston, Texas.
  • Mossa, G., Boenzi, F., Digiesi, S., Mummolo, G., & Romano, V.A. (2016). Productivity and ergonomic risk in human based production systems: A job-rotation scheduling model. Int. J. Production Economics, 171, 471–477.
  • Otto, A. & Scholl, A. (2013). Reducing ergonomic risks by job rotation scheduling. OR Spectrum 35, 711–733.
  • Özcan, E., Alakaş, H.M., Yelek, A., & Eren, T. (2020). Kısıt programlama ve hedef programlama entegrasyonu ile vardiya çizelgelemesi: Hidroelektrik santral uygulaması. Konya Mühendislik Bilimleri Dergisi, 8(4), 916-929.
  • Özder, E.H., Özcan, E., & Eren, T. (2020). A systematic literature review for personnel scheduling problems. International Journal of Information Technology & Decision Making, 19(06), 1695-1735.
  • Pınarbaşı, M. (2021). New chance-constrained models for U-type stochastic assembly line balancing problem. Soft Computing, 25, 9559–9573.
  • Pınarbaşı, M., & Alakaş, H.M. (2020). Personel Görev Çizelgeleme Problemi İçin Bir Excel Çözücü Modeli: Orta Gerilim Sigorta Üretimi Uygulaması. International Journal of Engineering Research and Development, 12(2), 729-744.
  • Pour, S.M., Drake, J.H., Ejlertsen, L.S., Rasmussen, K.M., & Burke, E. (2018). Constraint Programming/Mixed Integer Programming framework for the preventive signaling maintenance crew scheduling problem. European Journal of Operational Research, 269(1), 341-352.
  • Rattanamanee, T. & Nanthavanij, S. (2013). Multi-Workday Ergonomic Workforce Scheduling With Days Off. Proceedings of the 4th International Conference on Engineering, Project, and Production Management, 1(1), 1117-1125.
  • Rodriguez, J. (2007). A Constraint programming model for real-time train scheduling at junctions. Transportation Research Part B: Methodological, 41(2), 231-245.
  • Seçkiner, S.U. & Kurt, M. (2005). Bütünleşik Tur-Rotasyon Çizelgeleme Yaklaşimi İle İşyükü Minimizasyonu. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 20(2), 161-169.
  • Trilling, L., Guinet, A., & Le Magny, D. (2006). Nurse scheduling using integer linear programming and constraint programming. IFAC Proceedings Volumes, 39(3), 671-676.
  • Wang, T.C. & Liu, C.C. (2014). Optimal Work Shift Scheduling with Fatigue Minimization and Day Off Preferences. Mathematical Problems in Engineering, 1(1), 1-8.
  • Wongwien, T. & Nanthavanij, S. (2012). Ergonomic workforce scheduling under complex worker limitation and task requirements: Mathematical model and approximation procedure. Songklanakarin Journal of Science & Technology, 34(5), 541-549.
  • Wongwien, T. & Nanthavanij, S. (2013). Ergonomic Workforce Scheduling With Productivity And Employee Satisfaction Consideration. Proceedings of the 4th International Conference on Engineering, Project, and Production Management, 1(1), 1108-1116.
  • Yaoyuenyong, S. & Nanthavanij, S. (2006). Hybrid procedure to determine optimal workforce without noise hazard exposure. Computers & Industrial Engineering, 51(4), 743-764.