Dıştan Dişli Pompalarda Diş Ucundaki Kaçakların Teorik ve Sayısal Karşılaştırılması

Dıştan dişli pompalar, akışkan gücünün kullanıldığı uygulamalarda en çok tercih edilen pompa tiplerinden biri olmasına rağmen tasarım aşamasında iç kaçaklar, gürültü ve titreşim gibi problemler göz önünde bulundurulmalıdır. Bu nedenle, teorik hesaplamaları ve akış simülasyonlarını karşılaştırırken, bu çalışmada yeni bir iki boyutlu sayısal uç kaçağı analiz yöntemi geliştirilmiştir. Akış simülasyonları, 7 farklı dönme hızında ve 2 bardan 10 bara kadar olan basınç farklarında yapılmıştır. Ayrıca uç kaçak üzerindeki sıcaklık etkileri bu yeni yöntemle araştırılmıştır. Bu amaçla, gövde duvarı sıcaklığı 30 ºC ila 60 ºC arasında değiştirilmiştir. Sayısal ve teorik hesaplamalar arasındaki farkın seçilen parametre aralığında % 100'den fazla olabileceği gösterilmiştir. Bu sapma, dişli pompasının giriş ve çıkış portları arasındaki basınç farkının artmasıyla artmaktadır. Simülasyonlar, sapmanın, diş tepesi ile gövde duvarı arasına kaçak akış girerken ortaya çıkan enerji yitiminden ve teorik hesaplamalarda yapılan tam gelişmiş akış varsayımından kaynaklandığını ortaya koymuştur. Ayrıca, duvardaki sıcaklığın artması ile birlikte diş ucu kaçağının, viskozitenin sıcaklıkla düşmesine bağlı olarak, her 10 °C’de %10’luk bir arttığı gözlemlenmiştir.

Analysis of Tip Leakage in External Gear Pump

External gear pumps are one of the mostly used pump types in the fluid power applications due to simplicity, low cost and long operation period. However, there are some disadvantages such as internal leakages, noise and vibration with gear pumps. This study investigates comparison of theoretical calculations and numerical simulations with considering temperature effects on tip leakage. Numerical simulations have been done for pressure difference from 2 bars up to 10 bars for seven different rotational speeds. Additionally, the effect of wall temperature varied from 30 ºC up to 60 ºC has been investigated on the performance of gear pump. Because of extra assumptions made in theoretical calculations, it is shown that there are some deviations between theoretical and numerical results. These deviations are due to pressure drop which occurs because of energy dissipation between wall and teeth tip in numerical results and fully developed flow assumption made in theoretical analysis. Results of numerical study show that the fully developed assumption at the clearance of gear tooth and wall is not appropriate Furthermore, it has been shown that leakages increase linearly with temperature rise at the wall due to the drop in the viscosity of the liquid.

___

  • Castilla, R., Gamez-Montero, P. J., Ertrk, N., Vernet, A., Coussirat, M., & Codina, E. (2010). Numerical simulation of turbulent flow in the suction chamber of a gearpump using deforming mesh and mesh replacement. International Journal of Mechanical Sciences, 52(10), 1334–1342. https://doi.org/10.1016/j.ijmecsci.2010.06.009
  • Castilla, R., Gamez-Montero, P. J., del Campo, D., Raush, G., Garcia-Vilchez, M., & Codina, E. (2015). Three-Dimensional Numerical Simulation of an External Gear Pump With Decompression Slot and Meshing Contact Point. Journal of Fluids Engineering, 137(April), 41105. https://doi.org/10.1115/1.4029223
  • Devendran, R. S., & Vacca, A. (2013). Optimal design of gear pumps for exhaust gas aftertreatment applications. Simulation Modelling Practice and Theory, 38, 1–19. https://doi.org/10.1016/j.simpat.2013.06.006
  • Ghionea, G., Ioan, C., & Tiriplic, P. (2012). Simulation of the Working Conditions for a Gear Pump Using Finite Element Analysis Method, 2012(Xxvi), 21–28.
  • Ghazanfarian, J., & Ghanbari, D. (2014). Computational Fluid Dynamics Investigation of Turbulent Flow Inside a Rotary Double External Gear Pump. Journal of Fluids Engineering, 137(2), 21101. https://doi.org/10.1115/1.4028186
  • Houzeaux, G., & Codina, R. (2007). A finite element method for the solution of rotary pumps. Computers & Fluids, 36(4), 667–679. https://doi.org/10.1016/j.compfluid.2006.02.005
  • Koç, E., & Canbulut, F. (1985). Pozitif Deplasmanlı Pompa ve Motorlarda İç Akışkan Kaçağı. Kayseri: Erciyes Üni, Fen Bilimleri Dergisi.
  • Schiffer, J., Benigni, H., & Jaberg, H. (2013). Development of a novel miniature high-pressure fuel pump with a low specific speed. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 227(7), 997–1006. https://doi.org/10.1177/0954407013476820
  • Strasser, W. (2007). CFD Investigation of Gear Pump Mixing Using Deforming/Agglomerating Mesh. Journal of Fluids Engineering, 129(4), 476. https://doi.org/10.1115/1.2436577
  • Yusof, A. A., Wasbari, F., Zakaria, M. S., & Ibrahim, M. Q. (2013). Slip flow coefficient analysis in water hydraulics gear pump for environmental friendly application. IOP Conference Series: Materials Science and Engineering, 50(1), 12016. https://doi.org/10.1088/1757-899X/50/1/012016