Akaryakıt Sektörü için Metamalzeme Tabanlı Sensör Tasarımı ve Uygulaması

Metamalzemelerin sinyal emilimi, anten, sensör, süper lens vb. birçok uygulama alanı bulunmaktadır. Bu çalışmada ise metamalzemelerin sensör alanındaki önemli uygulamalarından birine değinilmiştir. Bu uygulama, akaryakıt sektörüne yönelik olup markası belirli ve markası belirli olmayan benzin ve mazot numunelerinin tespiti için metamalzeme tabanlı sensör tasarımıdır. Akaryakıt numuneleri için deneysel çalışma gerçekleştirilmiş olup bu veriler simülasyona girilerek buna uygun sensör tasarımı gerçekleştirilmiştir. Böyle bir çalışma diğer sektörler için de örnek teşkil ederek daha farklı sensör tasarımlarının yapılmasına da imkân sağlayacaktır.
Anahtar Kelimeler:

Metamalzeme, sensör, benzin, mazot

Metamelike Based Sensor Design and Application for Fuel Sector

Metamaterials have many application areas such as absorber, antenna, sensor, super lens and etc. In this study, we focused on sensor application of metamaterials. This application is metamaterial based sensor design in order to find branded and unbranded gasoline -diesel samples for liquid fuel sector. So, experimental setup is realized for branded and unbranded gasoline-diesel samples. Obtained measurement values entered to simulation programme to get optimal design. Such a study would be an example for other sectors to realize different sensor designs

___

  • Dincer, F., Akgol, O., Karaaslan, M., Unal, E., & Sabah, C. (2014a). Polarization angle independent perfect metamaterial absorbers for solar cell applications in the microwave, infrared, and visible regime. Progress In Electromagnetics Research, 144, 93–101.
  • Dincer, F., Karaaslan, M., Unal, E., Delihacioglu, K., &. Sabah, C., (2014b). Design of polarization and incident angle insensitive dual-band metamaterial absorber based on isotropic resonators, Progress In Electromagnetics Research, 144, 123–132.
  • Gunduz, O. T., & Sabah, C., (2015). Polarization angle independent perfect multiband metamaterial absorber and energy harvesting application. J. Comp. Electronics, doi:10.1007/s10825-015-0735-8.
  • Hwang, R. B., Liu, H. W., & Chin, C. Y., (2009). A metamaterial-based e-plane horn antenna, Progress In Electromagnetics Research, 93, 275-289.
  • Karaaslan, M., & Bakir, M., (2014). Chiral metamaterial based multifunctional sensor applications. Prog Electromagn Res., 149, 55–67.
  • Mullaa, B., & Sabah, C., (2017). Multi-band metamaterial absorber topology for infrared frequency regime, Physica E: Low-dimensional Systems and Nanostructures, 86, 44–51.
  • Pendry, J. B., Holden, A. J., Stewart, W. J., & Youngs, I. (1996). Extremely low frequency plasmons in metallic mesostructures. Phys Rev Lett., 76, 4773–4776.
  • Sabah C., Dincer F., Karaaslan M., Unal E., Akgol O., & Demirel E., (2014). Perfect metamaterial absorber with polarization and incident angle independencies based on ring and cross‐wire resonators for shielding and a sensor application. Opt Comm., 322, 137–142.
  • Shelby, R. A., Smith, D. R., & Schultz S. (2001). Experimental verification of a negative index of refraction. Science., 292, 77–79.
  • Smith, D. R., Padilla, W. J., Vier, D. C., Nemat‐Nasser, S. C., & Schultz, S. (2000). Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett., 84, 4184–4187.
  • Sun, J., Liu, L., Dong, G., & Zhou, J., (2011). An extremely broad band metamaterial absorber based on destructive interference. Opt. Express 19, 21155–21162.
  • Turkmen, O., Ekmekci, E., & Sayan, G. T., (2013). Effects of using different boundary conditions and computational domain dimensions on modeling and simulations of periodic metamaterial arrays in microwave frequencies, Intern. Jour of RF and Microwave Computer‐Aided Engineering, 23, 459–465.
  • Ustunsoya, M. P., & Sabah, C., (2016). Dual-band high-frequency metamaterial absorber based on patch resonator for solar cell applications and its enhancement with graphene layers, Journal of Alloys and Compounds, 687, 514–520. Veselago, V. G. (1968). The electrodynamics of substances with simultaneously negative values of ε and μ. Soviet Phys Uspekhi. 47, 509–514.
  • Vrba, D., Rodrigues, D. B., Vrba Jr. J., & Stauffer, P. R., (2016). Metamaterial antenna arrays for improved uniformity of microwave hyperthermia treatments," Progress In Electromagnetics Research, 156, 1-12.
  • Zhou, B., Li, H., Zou, X., & Cui, T. J., (2011). Broadband and high-gain planar vivaldi antennas based on inhomogeneous anisotropic zero-index metamaterials, Progress In Electromagnetics Research, 120, 235-247.