Akrilamid-Krotonik Asit İç İçe Geçmiş Ağ Yapılı Hidrojellerinin Metilen Mavisinin Adsorpsiyonunda Kullanımı

Bu çalışmada akrilamid-krotonik asit hidrojelleri metilen mavisi boyasının gideriminde adsorban olarak kullanılmıştır. Boyanın adsorpsiyonuna pH’nın, krotonik asit yüzdesinin, başlangıç boya derişiminin ve tekrar kullanım sayısının etkisi araştırılmıştır. Yalnızca akrilamidle hazırlanan hidrojellerde pH’nın artması ile adsorpsiyonda bir miktar artış görülmüştür. Akrilamid-krotonik asit hidrojellerinde pH 7, 9 ve 10’da adsorpsiyon hemen hemen yakın bulunmuş, buna karşılık pH 8’de belirgin bir azalma gözlenmiştir. Hidrojellerde bulunan krotonik asit yüzdesinin artması ile adsorpsiyon belirgin bir şekilde artmıştır. Ayrıca adsorbsiyon-desorpsiyon çalışmaları sonucu göstermektedir ki, 20 kere tekrar kullanımdan sonra bile hidrojellerin adsorpsiyon kapasitesi hemen hemen hiç azalmamıştır. Sonuçlar akrilamid-krotonik asit hidrojellerin endüstriyel ölçekte tekstil atık sularından boyaların gideriminde adsorban olarak kullanılabileceğini göstermektedir.

The Use of Acrylamide-Crotonic Acid Nested Network Structured Hydrogels for Adsorption of the Methylene Blue

In this study acrylamide-crotonic acid hydrogels are used as adsorbent for removal of methylene blue. The effects of pH, crotonic acid percentage, initial dye concentration and reusage number on the adsorption of the dye are investigated. When the pH increased adsorption also slightly increased with the hydrogels made up of only acrylamide. With the acrylamide crotonic acid hydrogels adsorption rates are similar in pH 7,9 and 10 but there is a significant decrease in pH 8. Adsorption increases with the increasing crotonic acid percentage in hydrogels. In addition, the adsorption-desorption results showed that the adsorption capacity of the hydrogel was not changed even after 20 times repeated use. Results show that acrylamide-crotonic acid hydrogels can be used as adsorbent for dye removal in industrial textile waste water.

___

  • Absalan, G., Asadi, M., Kamran, S., Sheikhian, L., & Goltz, D.M. (2011). Removal of reactive red-120 and 4-(2-pyridylazo) resorcinol from aqueous samples by Fe3O4 magnetic nanoparticles using ionic liquid as modifier, Journal of Hazardous Materials, 192(2), 476–484.
  • Aksu, Z. (2005). Application of biosorption for the removal of organic pollutants: a review, Process Biochemistry, 40(3-4), 997–1026.
  • Aktaş Uygun, D., Uygun, M., Akgöl, S., & Denizli, A. (2015). Reversible adsorption of catalase onto Fe3+ chelated poly(AAm-GMA)-IDA cryogels. Materials Science and Engineering C, 50, 379–385.
  • Aravindhan, R., Rao, J.R., & Nair, B.U. (2007). Removal of basic yellow dye from aqueous solution by sorption on green alga Caulerpa scalpelliformis, Journal of Hazardous Materials, 142, 68–76.
  • Arıca, M.Y., & Bayramoğlu, G. (2007). Biosorption of Reactive Red-120 dye from aqueous solution by native and modified fungus biomass preparations of Lentinussajor-caju, Journal of Hazardous Materials, 149(2), 499–507.
  • Barkoula, N. M., Alcock, B., Cabrera, N. O., & Peijs, T. (2008). Fatigue properties of highly oriented polypropylene tapes and all-polypropylene composites. Polymers and Polymer Composites, 16(2), 101–113.
  • Çelekli, A. Yavuz atmaca, M., & Bozkurt, H. (2009). Kinetic and equilibrium studies on the adsorption of reactive red 120 from aqueous solution on Spirogyra majuscula, Chemical Engineering Journal, 152(1), 139–145.
  • Çelekli, A., İlgün, G., & Bozkurt, H. (2012). Sorption equilibrium, kinetic, thermodynamic, and desorption studies of Reactive Red 120 on Characontraria, Chemical Engineering Journal, 191, 228-235.
  • Dizge, N., Aydiner, C., Demirbaş, E., Kobya, M., & Kara, S. (2008). Adsorption of reactive dyes from aqueous solutions by fly ash: Kinetic and equilibrium studies, Journal of Hazardous Materials, 150, 737–746.
  • Dulman, V., & Cucu-Man, S.M. (2009). Sorption of some textile dyes by beech wood sawdust, Journal of Hazardous Materials,162, 1457–1464.
  • Freundlich, H. (1906). Adsorption in solution, Phys. Chem. Soc, 40, 1361–1368.
  • Fu, J., Chen, Z., Wang, M., Liu, S., Zhang, J., Zhang, J., Han, R., & Xu, Q. (2015). Adsorption of methylene blue by a high-efficiency adsorbent (polydopamine microspheres): Kinetics, isotherm, thermodynamics and mechanism analysis, Chemical Engineering Journal 259, 53–61.
  • Guo, R., & Wilson, L.D. (2012). Synthetically engineered chitosan-based materials and their sorption properties with methylene blue in aqueous solution, Journal of Colloid and Interface Science, 388, 225–234
  • Gupta, V.K., Suhas, A.I., & Saini, V.K. (2004). Removal of rhodamine B, fastgreen, and methylene blue from waste water using red mud, an aluminum industry waste, Industrial & Engineering Chemistry Research, 43(7), 1740–1747.
  • Hsu, T.-C. (2008). Adsorption of an acid dye onto coal fly ash, Fuel, 87, 3040–3045.
  • Jesus, A.M.D., Romão, L.P.C., Araújo, B.R., Costa, A.S., & Marques, J.J. (2011). Use of humin as an alternative material for adsorption/desorption of reactive dyes. Desalination, 274(1), 13–21.
  • Kaith, B. S., Jindal, R., & Sharma, R. (2015). Synthesis of a Gum rosin alcohol-poly(acrylamide) based adsorbent and its application in removal of malachite green dye from waste water. RSC Advances, 5(54), 43092–43104.
  • Karadağ, E., Üzüm, Ö.B., & Saraydın, D.(2002). Swelling equilibria and dye adsorption studies of chemically cross linked super absorbent acrylamide/maleic acid hydrogels, European Polymer Journal, 38(11), 2133–2141.
  • Khaled, A., El Nemr, A., El-Sikaily, A.E.A., & Abdelwahab, O. (2009). Treatment of artificial textile dye effluent containing Direct Yellow 12 by orange peel carbon. Desalination, 238(1), 210–232.
  • Kumar, K.V., & Porkodi, K. (2007). Mass transfer, kinetics and equilibrium studies for the biosorption of methylene blue using Paspalumnotatum, Journal of Hazardous Materials, 146, 214–226.
  • Kyzas, G. Z., Deliyanni, E. A., & Lazaridis, N. K. (2014). Magnetic modification of microporous carbon for dye adsorption. Journal of Colloid and Interface Science, 430, 166–173.
  • Langmuir, I. (1918). The adsorption of gases on plane surface of glass, mica and platinum, Journal of the American Chemical Society, 40, 1361–1368.
  • O’Neill, C., Hawkes, F.R., Hawkes, D.L., Lourenco, N., Pinheiro, H.M., & Delee, W. (1999). Colour in textile effluents – sources, measurement, discharge consents and simulation: a review, Journal of Chemical Technology and Biotechnology, 74(11), 1009–1018.
  • Radha, K.V., Regupathi, A., Arunagiri, T., & Murugesan, T. (2005). Decolorization studies of synthetic dyes using Phanerochaete chrysosporium and their kinetics. Process Biochemistry, 40(10), 3337–3345.
  • Robinson,T., Mcmullan, G., Marchant, R., & Nigam, P.(2001). Remediation of dyes in textile effluent: a critical review on current treatment Technologies with a proposed alternative, Bioresource Technology, 77(3), 247–255.
  • Runping, H., Zhang, J., Han, P., Wang, Y., Zhao, Z., & Tang, M. (2009). Study of equilibrium, kinetic and thermodynamic parameters about methylene bluea dsorption onto natural zeolite, Chemical Engineering Journal, 145, 496–504.
  • Salleh, M.A.M., Mahmoud, D.K., Karim, W.A.W.A., & Idris A. (2011). Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review, Desalination, 280(1), 1–13.
  • Sathishkumar, P., Arulkumarb, M., & Palvannanb, T. (2012). Utilization of agro-industrial waste Jatropha curcas pods as an activated carbon for the adsorption of reactive dye Remazol Brilliant Blue R (RBBR), Journal of Cleaner Production, 22, 67-75.
  • Sharma, K., Kaith, B. S., Kumar, V., Kumar, V., Som, S., Kalia, S., & Swart, H. C. (2013). Synthesis and properties of poly(acrylamide-aniline)-grafted gum ghatti based nanospikes, RSC Advances, 3(48), 25830-25839.
  • Singh, K.P., Mohan, D., Sinha, S., Tondon, G.S., & Gosh, D. (2003). Color removal from waste water using low-cost activated carbon derived from agricultural waste materia, Industrial & Engineering Chemistry Research, 42, 1965–1976.
  • Slokar, Y.M., & Le Marechal, A.M. (1997). Methods of decoloration of textilewastewaters, Dyes and Pigments, 37, 335–356. Srinivasan, A., & Viraraghavan, T.(2010). Decolorization of dye waste waters by biosorbents: a review, J. Environ. Manage, 91(10), 1915–1929.
  • Vijayaraghavan, K., & Yun, Y.S. (2008). Biosorption of CI Reactive Black 5 from aqueous solution using acid-treated biomass of Brown sea weed Laminaria sp, Dyes and Pigments, 76(3), 726–732.
  • Wang, W., Ding, Z., Cai, M., Jian, H., Zeng, Z., Li, F., & Liu, J.P. (2015). Synthesis and high-efficiency methylene blue adsorption of magnetic PAA/MnFe2O4 nanocomposites, Applied Surface Science, 346, 348–353
  • Won, S.W., Choi, S.B., Chung, B.W., Park, D., Park, J.M., & Yun, Y.-S. (2004). Biosorptive Decolorization of Reactive Orange 16 Using the Waste Biomass of Corynebacterium glutamicum, Industrial & Engineering Chemistry Research, 43(24), 7865–7869. Yang, C.-X., Lei, L., Zhou, P.-X., Zhang, Z., & Lei, Z.-Q. (2015). Preparation and characterization of poly(AA co PVP)/PGS composite and its application for methylene blue adsorption, Journal of Colloid and Interface Science, 443, 97–104.
  • Yiamsawas, D., Kangwansupamonkon, W., Chailapakul, O., & Kiatkamjornwong, S. (2007). Synthesis and swelling properties of poly[acrylamide-co-(crotonicacid)] super absorbents, Reactive & Functional Polymers, 67(10), 865–882.
  • Zollinger, H. 1987. Synthesis, Properties of Organic Dyes and Pigments. In: Color Chemistry. New York, USA: VCH Publishers, pp. 92-100.