Titanyum İmplantlar Üzerinde Biyofilm Oluşumu, in situ 24 saat

Amaç: Cilalanmış ve asit ile muamele edilmiş titanyum yüzeylere bakteri yapışması ve biyofilm oluşumu değerlendirilmiştir. Ti implant yüzeyin özelliğine göre; mikroorganizmaların yüzeye tutunma miktarını belirlemektir ve yüzey pürüzlülüğünün etkisini değerlendirmektir.Gereç ve Yöntem: 24- 71 yaş arası sağlıklı erkek ve kadınlardan oluşan, 9 kişilik gönüllü grubu için, cilalanmış ve asit ile pürüzlendirilmiş 2 farklı çeşit Ti numunesi çalışmamızda kullanıldı. Çalışmaya katılan tüm gönüllülerin sigara ve alkol öyküsü olmaksızın, aşırı miktarda polifenolik içecek ve gıdaları tüketmeden, günlük düzenli beslenme yöntemlerine devam etmişlerdir. Yüzey Scannig elektron mikroskobu ve Flouresence mikroskobu ile değerlendirildi. Bulgular: Ti yüzeyi, asit ile muamele edilmesi; yüzeye bakteri yapışması ve büyümesini arttırdığı, cilalı yüzeyin, bakteri yapışmasını ve in situ büyümeyi azalttığını, bunun tıbbi alanlardaki ve biyosistemlerdeki çeşitli uygulamalar için ilginç olabileceğini gösterdi. Sonuç: Mikrotopografinin modifikasyonları yüzey alanındaki artışa katkıda bulunur, özellikle yüzey pürüzlülüğü. Bu çalışma, yüzey pürüzlülüğünün bakteri tutunması ile doğru oranda geliştiğini göstermiştir. Yüzey pürüzlülüğü, Ti implantın, iyi mekanik özelliklere sahip olmasına rağmen, bakteri-implant teması, biyofilm oluşumu için etkin yüzey sağlamada önemli bir rol oynamıştır

Biofilm Formation on Titanium Implants, 24h in situ

Aim: Evaluation of the bacteria adhesion on polished and acid etched titanium surfaces at 24 h in situ biofilm formation. According to the nature of Ti implant surface; determine the amount of surface adhesion of microorganisms and evaluate the effect of surface roughness.Material and Method: A total of 2 different type of Titanium specimens as polished and acid etched surface in nine patients whose healthy that man and woman, aged between 24 and 71 years, were included in our study. All subjects had been on their regular daily diet with no excessive consumption of polyphenolic beverages and foods and had no history of smoking or alcohol. The surface were evaluated by Scannig electron microscopy and Fluorescence microscopy. Results: Ti surface showed that acid treated surface provide enhanced bacterial adhesion and growth, polished surface decreased enhanced bacterial adhesion and growth 24 in situ which can be interesting for various applications in medical fields as well as in biosciences. At the point when contrast and in vitro and in situ research facility models for explore biofilm arrangement, in situ model is the best as the effect of concoction operators on biofilm advancement.Conclusion: The modifications of micro topography contribute to an increase in surface area, especially surface roughness. This study has shown that surface roughness improves correctly with bacterial adhesion. Significant surface roughness on Ti implant played an important role in providing effective surface for bacteria-implant contact, biofilm formation, despite having good mechanical properties

___

  • 1. Lausmaa J. Surface spectroscopic characterization of titanium implant materials. Journal of Electron Spectroscopy and Related Phenomena,1996 81, 343-361.
  • 2. Lausmaa J. Mechanical, Thermal, Chemical and Electrochemical Surface Treatment of Titanium. In: Brunette DM, editor. Titanium in medicine: material science, surface science, engineering, biological responses and medical applications. Berlin: Springer, 2001; 1019.
  • 3. Xiao S J, Textor M, Spencer N D, Sigrist H, Langmuir 1998; 14: 5507–5516.
  • 4. Marshall, K. C. Mechanisms of adhesion of marine bacteria to surfaces. Proceedings of the Third International Congress on Marine Corrosion and Fouling. United States National Bureau of Standards Special Publication. 1973.
  • 5. Zhao, Q.; Xu, X.; Zhang, H.; Chen, Y.; Xu, J.; Yu, D. Applied Physics A, 2004; 79, (7), 1721-1724.
  • 6. Hetrick, E.M.; Schoenfisch, M.H. Reducing implant-related infections: Active release strategies. Chem. Soc. Rev.2006; 35, 780–789.
  • 7. Harris, L.G.; Richards, R.G. Staphylococci and implant surfaces: A review. Injury, 2006; 37, S3–S14.
  • 8. Dunne, W.M., Jr. Bacterial adhesion: Seen any good biofilms lately Clin. Microbiol. Rev., 2002; 15, 155–166.
  • 9. Hannig C; Hannig MThe oral cavity --a key system to understand substratum- dependent bioadhesion on solid surfaces in man. Clinical Oral Investigations 2009; 13:123- 139.
  • 10. Hannig M, Khanafer AK, Hoth-Hannig W, Al-Marrawi F, Açil Y, Transmission electron microscopy comparison of methods for collecting in situ formed enamel pellicle. Clin Oral Investig 2005; 9:30-37.
  • 11. Hannig, C., Hannig, M., Rehmer, O., Braun, G., Hellwig, E. & AlAhmad, A.. Fluorescence microscopic visualization and quantification of initial bacterial colonization on enamel in situ. Arch Oral Biol 2007; 52, 1048–1056.
  • 12. Hannig, M. Transmission electron microscopy of early plaque formation on dental materials in vivo. Eur J Oral Sci 1999;107, 55–64.
  • 13. Walsh WR, Svehla MJ, Russell J, et al. Cemented fixation with PMMA or Bis-GMA resin hydroxyapatite cement: effect of implant surface roughness. Biomaterials. 2004; 25:4929–4934.
  • 14. Khang D, Kim SY, Liu-Snyder P, Palmore GTR, Durbin SM, Webster TJ. Enhanced fibronectin adsorption on carbon nanotube/poly(carbonate) urethane: independent role of surface nano-roughness and associated surface energy. Biomaterials. 2007; 28:4756–4768.
  • 15. Jin C., Normani S. D. & Emelko M. B. Surface Roughness Impacts on Granular Media Filtration at Favorable Deposition Conditions: Experiments and Modeling. Environ. Sci. Technol. 49 7879–7888 (2015).
  • 16. Vinogradova O. I. & Belyaev A. V. Wetting, roughness and flow boundary conditions. J. Phys: Condens Matter 23, 184104 (2011).