Genç Kadın Kros ve Alp Kayakçılarında İzokapnik Tamponlama Fazının Karşılaştırılması

Bu çalışma, genç kadın kros ve alp kayakçılarının izokapnik tamponlama faz değerlerini birbirleriyle karşılaştırmak amacıyla çalışılmıştır. Araştırmaya, uluslararası düzeyde yarışmalara katılan 10 genç kadın kros kayakçısı ve 8 genç kadın alp kayakçısı katılmıştır. Maksimal oksijen alımı (VO2max), solunumsal eşik (SE) ve solunumsal kompenzasyon noktası (SKN) değerleri [1]koşu bandında şiddeti giderek artan egzersiz test protokolü uygulanarak tespit edilmiştir.SE ve SKN değerleri V-Slope yöntemi ile belirlenmiştir. İzokapnik tamponlama (İKT) fazı, SKN ile SE arasındaki fark olarak hesaplandı ve hem mutlak hem de göreceli VO2 (İKTVO2) ve koşu hızı (İKTHIZ) değerleri ile ifade edildi. SE ve SKN karşılık gelen VO2, kalp atımı hızı ve koşu hızı tespit edilerek, VO2max’nin ve maksimal koşu hızının yüzdesi cinsinden görece değerleri hesaplandı. Tükenme zamanı testin toplam süresi olarak belirlendi.Kros kayakçıları VO2max, maksimal koşu hızı, tükenme zamanı, hem mutlak hem de göreceli SE değerleri ve mutlak SKN değerleri alp kayakçılarına kıyasla anlamlı olarak yüksek bulunurken (P<0.05), görece SKN değerleri arasında istatistiksel olarak anlamlı fark görülmedi (p>0.05). Hem mutlak hem de görece İKTVO2 değerleri alp kayakçılarında kros kayakçılarına kıyasla istatistiksel olarak daha yüksek bulundu (p<0.05). Görece İKTHIZ değerleri alp kayakçılarında kros kayakçılarına kıyasla anlamlı olarak yüksek bulunurken (p<0.05), mutlak İKTHIZ değerleri iki grupta istatistiksel olarak benzerlik gösterdi (p>0.05). Araştırma bulgularımız, alp kayakçıların kros kayakçılarına kıyasla aerobik kapasitelerinin daha düşük ve solunumsal eşiğe daha erken girdiklerini, öte yandan izokapnik tamponlama fazlarının daha geniş ve eşik sonrası egzersize toleranslarının daha yüksek olduğunu göstermiştir.

A Comparison of Isocapnic Buffering Phase of Young Female Cross-Country and Alpine Skiers

The purpose of this study was to compare the isocapnic buffering phase in young female cross-country skiers and alpine skiers. International level young female skiers including ten cross-country skiers and eight alpine skiers took part in the study. Maximal oxygen uptake (VO2max), ventilatory threshold (VT) and respiratory compensation point (RCP) were determined using an incremental treadmill exercise test. VT and RCP were determined using the V-slope method. The isocapnic buffering (ICB) phase was calculated as the difference in VO2 (ICBVO2) and running speed (ICBSPEED) between RCP and VT and expressed in either absolute or relative values. The values of VO2, heart rate, and running speed corresponding to the VT and RCP were identified. Relative VT and RCP values were recorded as a percentage of VO2max and maximal running speed. Time to exhaustion was determined as the total duration of the test. VO2max, maximal running speed, time to exhaustion, both absolute and relative VT values and absolute RCP values were higher in the cross-country skiers than in the alpine skiers (P<0.05), whereas relative RCP showed similar values in both group (p>0.05). Absolute ICBSPEED showed similar values in both group (p>0.05), whereas absolute and relative ICBVO2 and relative ICBSPEED were found to be significantly higher in alpine skiers than in cross-country skiers (P<0.05). The results of this study indicated that the aerobic capacity and ventilatory threshold lower in alpine skiers than in cross-country skiers, while the isocapnic buffering phase and the high-intensity exercise tolerance were higher in alpine skiers.

___

  • Beaver, W. L., Wasserman, K., & Whipp, B. J. (1986). A new method for detecting the anaerobic threshold by gas exchange. Journal of applied physiology, 60(6), 2020-2027.
  • Bentley, D. J., Vleck, V. E., & Millet, G. P. (2005). The isocapnic buffering phase and mechanical efficiency: Relationship to cycle time trial performance of short and long duration. Canadian Society for Exercise Physiology, 30(1), 46–60.
  • Bishop, D., Girard, O., & Mendez-Villanueva, A. (2011). Repeated-Sprint Ability – Part II Recommendations for Training. Sports medicine, 41(9), 741-756.
  • Bosco, C., Cotelli, F., Bonomi, R., Mognoni, P., & Roi, G. S. (1994). Seasonal fluctuations of selected physiological characteristics of elite alpine skiers. European journal of applied physiology and occupational physiology, 69(1), 71-4.
  • Chicharrro, J., Hoyos, J., & Lucia, A. (2000).Effects of endurance training on the isocapnic buffering and hypocapnic hyperventilation phases in Professional cyclists. British journal of sports medicine, 34, 450-455.
  • Docherty, D. & Sporer, B. (2000). A proposed model for examining the interference phenomenon between concurrent aerobic and strength training. Sports medicine, 30(6), 385-94.
  • Edge, J., Bishop, D., & Goodman, C. (2006). The effects of training intensity on muscle buffer capacity in females. European journal of applied physiology, 96, 97-105.
  • Edge, E. J., Bishop, D., Hill-Haas, S., & Dawson, B., Goodman, C. (2006). Comparison of muscle buffer capacity and repeated-sprint ability of untrained, endurance-trained and team-sport athletes. European journal of applied physiology, 96, 225-234.
  • Hasanli, M., Nikooie, R., Aveseh, M., & Mohammad, F. (2015). Prediction of aerobic and anaerobic capacities of elite cyclists from changes in lactate during isocapnic buffering phase. Journal of strength and conditioning research, 29(2), 321-9.
  • Helgerud, J. (1994). Maximal oxygen uptake, anaerobic threshold and running economy in women and men with similar performance levels in marathons. European journal of applied physiology and occupational physiology, 68, 155-61.
  • Hirakoba, K., & Yunoki, T. (2002). Blood lactate changes during isocapnic buffering in sprinters and long distance runners. Journal of physiological anthropology and applied human science, 21(3), 143-9.
  • Holmberg, H. C. (2015). The elite cross-country skier provides unique insights into human exercise physiology. Scandinavian Journal of Medicine & Science in Sports, 25(4), 100-109.
  • Hydren, J. R., Volek, J. S., Maresh, C. M., Comstock, B. A., & Kraemer, W. J. (2013). Review of strength and conditioning for alpine ski racing. Strength & Conditioning Journal, 35, 10-28.
  • Ivy, J. L., Withers, R. T., Van Handel, P. J., Elger, D. H., & Costill, D. L. (1980). Muscle respiratory capacity and fiber type as determinants of the lactate threshold. Journal of applied physiology: respiratory, environmental and exercise physiology, 48, 523-527.
  • Lenti, M., De Vito, G., Scotto di Palumbo, A., Sbriccoli, P., Quattrini, F. M., et al. (2011). Effects of aging and training status on ventilatory response during incremental cycling exercise. Journal of strength and conditioning research, 25(5), 1326-1332.
  • Meyer, T., Faude, O., Scharhag, J., Urhausen, A., & Kindermann, W. (2004). Is lactic acidosis a cause of exercise induced hyperventilation at the respiratory compensation point? British journal of sports medicine, 38, 622-625.
  • Mohr, M., Krustrup, P., Nielsen, J. J., Nybo, L., Rasmussen, M. K., et al. (2007). Effect of two different intense training regimens on skeletal muscle ion transport proteins and fatigue development. American journal of physiology, Regulatory, integrative and comparative physiology, 292, 1594-1602.
  • Nakagawa, Y.,& Hattori, M. (2002).Relationship between muscle buffering capacity and fiber type during anaerobic exercise in human.Journal of physiological anthropology and applied human science, 21, 129-131.
  • Oshima, Y., Miyamoto, T., Tanaka, S., Wadazumi, T., Kurihara, N., et al. (1997). Relationship between isocapnic buffering and maximal aerobic capacity in athletes. European journal of applied physiology and occupational physiology, 76, 409-14.
  • Oshima, Y., Tanaka, S., & Miyamoto, T. (1998). Effects of endurance training above the anaerobic threshold on isocapnic buffering phase during incremental exercise in middle-distance runners. Japanese Journal of Physical Fitness and Sports Medicine, 47, 43-52.
  • Parkhouse, W. S., & Mckenzie, D. C. (1984). Possible contribution of skeletal muscle buffer to enhanced anaerobic performance: a brief review. Medicine and science in sports and exercise, 16, 328-338.
  • Parkhouse, W. S., Mckenzie, D. C., Hochachka, P. W., & Ovalle, W. K. (1985). Buffering capacity of deproteinized human vastuslateralis muscle. Journal of applied physiology, 58, 14-17.
  • Rausch, S. M., Whipp, B. J., Wasserman, K., & Huszczuk, A. (1991). Role of the carotid bodies in the respiratory compensation for the metabolic acidosis of exercise in humans. The Journal of physiology, 444, 567-78.
  • Röcker, K., Striegel, H., Freund, T., & Dickhuth, H. H. (1994). Relative functional buffering capacity in 400-meter runners, long-distance runners and untrained individuals. European journal of applied physiology and occupational physiology, 68, 430-434.
  • Sandbakk, Ø., & Holmberg, H. C. (2014). A reappraisal of success factors for olympic cross-country skiing. International journal of sports physiology and performance, 9(1), 117-21.
  • Seiler, K. S., & Kjerland, G. Ø. (2006). Quantifying training intensity distribution in elite endurance athletes: is there evidence for an ‘‘optimal’’ distribution? Scandinavian Journal of Medicine & Science in Sports, 16(1), 49-56.
  • Sharp, R. L., Costill, D. L., Fink, W. J., & King, D. S. (1986). Effects of eight weeks of bicycle ergometer sprint training on human muscle buffer capacity. International Journal of Sports Medicine, 7, 13-17.
  • Staib, J. L., Im, J., Caldwell, Z., & Rundell, K. W. (2000). Cross-country ski racing performance predicted by aerobic and anaerobic double poling power. Journal of strength and conditioning research, 14(3), 282-288.
  • Stringer, W., Wasserman, K., & Casaburi, R. (1995). The VCO2/VO2 relationship during heavy, constant work rate exercise reflects the rate of lactic acid accumulation. European journal of applied physiology and occupational physiology, 72, 25-31.
  • Takano, N. (2000). Respiratory compensation point during incremental exercise as related to hypoxic ventilatory chemosensitivity and lactate increase in man. The Japanese journal of physiology, 50(4), 449-55.
  • Thalheimer, W., & Cook, S. (2002). How to calculate effect sizes from published research articles: A simplified methodology. Available at: http://work learning.com/effect_sizes.htm. Accessed on January 11 (2016).
  • Wasserman, K., (1984). The anaerobic threshold measurement to evaluate exercise performance. American review of respiratory disease, 129, 35-40.
  • Whipp. B. J., Davis, J. A., & Wasserman, K. (1989). Ventilatory control of the 'isocapnic buffering' region in rapidly-incremental exercise. Respiration physiology, 76(3), 357-67.
  • White, A.T., & Johnson, S. C. (1991). Physiological comparison of international, national and regional alpine skiers. International Journal of Sports Medicine, 12(4), 374-378.