Çinko Oksit Nanoparçacıklarına Maruz Bırakılan Gammarus pulex’te Metallothionein Üzerine Etkisi

Nanopartikül (NP) ürünlerinin endüstride kullanımının artmasıyla birlikte ekosistem ve tüm organizmalar doğrudan ve dolaylı olarak NP’lerin etkisiyle risk altında olmaktadırlar. Bu çalışmada, tatlısularda yaşayan Gammarus pulex’in çinko (Zn) ve çinko oksit (ZnO) NP’lere maruz bırakılmasıyla metallotionein (MT) biyobelirteç yanıtları tespit edilmiştir. Denemede, kontrol grubu dahil toplam dört deneysel uygulama grubu (Kontrol, 10 ppm, 20 ppm, 40 ppm) oluşturulmuş ve üç tekerrür ile çalışılmıştır. Zn-NP’ne maruz bırakılan, 24. ve 96. saatlerde alınan Zn-NP uygulama örneklerinin MT seviyelerinde kontrole kıyasla artışa (p<0.05) neden olduğu belirlenmiştir. Benzer şekilde, ZnO-NP uygulama örneklerinin MT seviyelerinde de 96 saat örneklerinde kontrole kıyasla artışlara neden olduğu (p<0.05) belirlenmiş, ancak 24. saat uygulama örneklerinde MT seviyelerinde istatistiksel açıdan far bulunamamıştır (p<0,05). Çalışmada yapılan analizler sonucunda, Zn ve ZnO NP’lerin organizmada MT seviyelerinde artışa sebebiyet verdiği, bu artışın oksidatif stres yapabileceği öngörülmektedir. Nano boyuttaki malzemelerin artan kullanım alanları ile birlikte, çevre için büyük bir problem olarak karşımıza çıkabileceği belirlenmiştir.

Effect on Metallothionein in Gammarus pulex Exposed to Zinc Oxide Nanoparticles

With the increase in the use of nanoparticle (NP) (<100nm) products in the industry, ecosystems, aquatic environments, all organisms that make up the food chain are directly and indirectly at risk with the effect of NPs. In this study, metallothionine (MT) biomarker responses were determined by exposing Gammarus pulex, an indicator species living in freshwaters, to zinc (Zn) and zinc oxide (ZnO) NPs. In the experiment, a total of four Zn and ZnO groups (Control, 10 ppm, 20 ppm, 40 ppm) including the control group were formed and studied with three replications. It was determined that Zn-NP application samples exposed to Cu-NP and taken at 24 and 96 hours caused an increase (p<0.05) in MT levels compared to the control. ZnO-NP application samples caused increases in MT levels in 96 hour samples compared to control (p<0.05), but there was no statistical difference in MT levels in 24th hour application samples (p<0.05). As a result of the analyzes made in the study, it is predicted that Zn and ZnO NPs cause an increase in MT levels in the organism, and this increase may cause oxidative stress. It has been determined that these nano-sized materials can be a big problem for the environment with the increasing usage areas.

___

  • Margoshes M, Vallee BL. A cadmium protein from equine kidney cotex. Journal of the American Chemical Society.1957; 79: 813-4814.
  • Kage, J. H. R., & Vallee, B. L. (1961). A cadmium and zinccontaining protein from equine renal cortex. J. Biol. Chem, 236, 2435-2442.
  • Roesijadi, G. (1992). Metallothionein in metal regulation and toxicity in aquatic animals. Review. Aquatic Toxicology 22 (2) 81-113.
  • Newman, M. C. (2009). Fundamentals of ecotoxicology. CRC press.
  • Wang, G., and Fowler, B. A. (2008). Roles of biomarkers in evaluating interactions among mixtures of lead, cadmium and arsenic. Toxicology and applied pharmacology, 233(1), 92-99.
  • Szczurek, E. I., Bjornsson, C. S., & Taylor, C. G. (2001). Dietary zinc deficiency and repletion modulate metallothionein immunolocalization and concentration in small intestine and liver of rats. The Journal of nutrition, 131(8), 2132-2138.
  • Bremner, I. and Beattie, J.H. (1990). Metallothionein and trace minerals. Annu. Rev. Nutr. 10:63-83.
  • Mitropoulos D, Kyroudi-Voulgari A, Theocharis S, Serafetinides E, Moraitis E, Zervas A, Kıttas C. Prognostic significance of metallothionein expression in renal cell carcinoma. World Journal of Surgical Oncology. 2005; 3(1): 5.
  • Webb M. Toxicological significance of metallothionein. experientia. Elsevier Science Publishers. 1987; 52: 109-134.
  • Coyle P, Philcoxa JC, Careya LC, Rofea AM. Metallothionein: the multipurpose protein cmls, Cellular and Molecular Life Sciences, 2002; 59: 627–647
  • Işık, K. (2015). Farklı özellikteki ZnO nanopartiküllerinin fibroplast hücreleri üzerindeki etkilerinin in vitro olarak değerlendirilmesi (Doctoral dissertation, Anadolu University (Turkey).
  • Delatte, N.J. (2001), Lessons from roman cement and concrete, J. Prof. Issues Eng. Educ. Pract. 127, 109–115.
  • Edwards, P.P. ve Thomas, J.M. (2007), Gold in a metallic divided state—from faraday to present-day nanoscience, Angew. Chem. Int. Ed. 46, 5480–5486
  • Sanchez, C., Lebeau, B., Chaput, F. ve Boilot, J.P. (2003), Optical properties of functional hybrid organic-inorganic nanocomposites, Adv. Mater. 15, 1969– 1994.
  • Bunker VW, Hinks LJ, Lawson MS, Clayton BE. Assessment of zinc and copper status of healthy elderly people using metabolic balance studies and measurement of leukocyte concentrations. 1984; 40: 1096-1102.
  • Thomas AJ, Bunker VW, Hınks U, Sodha N, Mullee MA, Clayton BE. Energy, protein zinc and copper status of twenty-one elderly in patients: analyzed dietary intake and biochemical indices. 1988; 59: 181-194.
  • Vance, M.E., Kuiken, T., Vejerano, E.P., McGinnis, S.P., Hochella Jr., M.F., Rejeski, D., Hull, M.S., 2015. Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein J. Nanotechnol. 6, 1769-1780.
  • Martin, J.D., Telgmann, L., Metcalfe, C.D., 2017. A method for preparing silver nanoparticle suspensions in bulk for ecotoxicity testing and ecological risk assessment. Bull. Environ. Contam. Toxicol. 98, 589–594. https://doi.org/ 10.1007/s00128-017-2067-9.
  • Garner, K.L., Suh, S., Lenihan, H.S., Keller, A.A., 2015. Species sensitivity distributions for engineered nanoparticles. Environ. Sci. Technol. 49, 5753–5759.
  • Gottschalk, F., Sonderer, T., Scholz, R.W., Nowack, B., 2009. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ. Sci. Technol. 43 (24), 9216–9222.
  • Morales-Diaz, A.B., Ortega-Ortiz, H., Juarez-Maldonado, A., Juarez-Maldonado, A., Cadenas-Pliego, G., González-Morales, S., Benavides-Mendoza, A., 2017. Application of nanoelements in plant nutrition and its impact in ecosystems.
  • Ben-Moshe, T., Frenk, S., Dror, I., Minz, D., Berkowitz, B., 2013. Effects of metal oxide nanoparticles on soil properties. Chemosphere 90, 640–646. https://doi.org/ 10.1016/j.chemo spher e.2012.09.018.
  • Aruoja, V., Pokhrel, S., Sihtmäe, M., Mortimer, M., Mädler, L., Kahru, A., 2015. Toxicity of 12 metal-based nanoparticles to algae, bacteria and protozoa. Environ. Sci. Nano. 2, 630–644. https://doi.org/10.1039/C5EN0 0057B.
  • Baysal, A., Saygin, H., Ustabasi, G.S., 2019. Influence of Al2O3 nanoparticles on the soil elements. Bull. Environ. Contam. Toxicol. 102, 98–104. https://doi.org/ 10.1007/s00128-018-2481-7.
  • Altıntıg, E., Altundag, H., Tuzen, M., Sarı, A., 2017. Effective removal of methylene blue from aqueous solutions using magnetic loaded activated carbon as novel adsorbent. Chem. Eng. Res. Des. 122, 151–163. https://doi.org/10.1016/j. cherd.2017.03.035.
  • Baysal, A., Saygın, H., 2018. Effect of zinc oxide nanoparticles on the trace element contents of soils. Chem. Ecol. 34 (8), 713–726. https://doi.org/10.1080/02757 540.2018.14915 56.
  • Nowack, B., Bucheli, T.D., 2007. Occurrence, behavior and effects of nanoparticles in the environment. Environ. Pollut. 150, 5–22.
  • Serpone, N., Dondi, D., Albini, A., 2007. Inorganic and organic UV filters: Their role and efficacy in sunscreens and suncare products. Inorganica Chimca Acta 360, 794–802.
  • Becheri, A., Dürr, M., Nostro, P.L., Baglioni, P., 2008. Synthesis and characterization of zinc oxide nanoparticles: Application to textiles as UV-absorbers. J. Nanopart. Res. 10 (4), 679–689.
  • Hanley, C., Layne, J., Punnoose, A., Reddy, K.M., Coombs, I., Coombs, A., Feris, K., Wingett, D., 2008. Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles. Nanotechnology 19, 295103.
  • Lin, D., Xing, B., 2008. Root uptake and phytotoxicity of ZnO nanoparticles. Environ. Sci. Technol. 42 (15), 5580–5585.
  • Rand, G.M., 1995. Fundamentals of aquatic toxicology: Effects, environmental fate and risk assessment. CRC Press.
  • Danabas, D., Ates, M., Tastan, B. E., Cimen, I. C. C., Unal, I., Aksu, O., & Kutlu, B. (2020). Effects of Zn and ZnO nanoparticles on Artemia salina and Daphnia magna organisms: toxicity, accumulation and elimination. Science of the total environment, 711, 134869.
  • Kargın, F., & Palandökenlier, E. (2019). Çinko Oksit Nanopartikülleri ve Çinko Sülfatın Oreochromis niloticus’ un Kan Dokusunda Bazı Biyokimyasal Parametreler üzerine Etkisi. Journal of Anatolian Environmental and Animal Sciences, 4(3), 447-453.
  • Serdar, O. (2019). The effect of dimethoate pesticide on some biochemical biomarkers in Gammarus pulex. Environmental Science and Pollution Research, 26(21), 21905-21914.
  • Thomas, J.P., Bachowski, G.J., & Girotti, A.W., (1986). Inhibition of cell membrane lipid peroxidation by cadmium-and zinc-metallothioneins. Biochimica et Biophysica Acta (BBA)-General Subjects, 884(3), 448-461.
  • Vašák, M., (2005). Advances in metallothionein structure and functions. Journal of Trace Elements in Medicine and Biology, 19(1), 13-17.
  • Amiard, J. C., Amiard-Triquet, C., Barka, S., Pellerin, J., & Rainbow, P.S., (2006). Metallothioneins in aquatic invertebrates: their role in metal detoxification and their use as biomarkers. Aquatic toxicology, 76(2), 160-202.
  • Torres, P., Tort, L., & Flos, R., (1987). Acute toxicity of copper to mediterranean dogfish. Comparative Biochemistry and physiology. C, Comparative Pharmacology and Toxicology, 86(1), 169-171.
  • Hogstrand C, Lithner G, Haux C. Relationship between metallothionein, copper and zinc in perch (Perca fluviatilis) environmentally exposed to heavy metals. Marine Environmental Research. 1989; 28: 179–182.
  • Van Campenhout K, Bervoets L, Blust R. Metallothionein concentrations in natural populations of gudgeon (Gobio gobio): relationship with metal concentrations in tissues and environment. Environmental Toxicology and Chemistry. 2003; 22: 1548–1555.
  • Bervoets L, Knapen D, De Jonge M, Van Campenhout K, Blust R. Differential hepatic metal and metallothionein levels in three Feral fish species along a metalpollution gradient. Plos One. 2013; p. 8-3.
  • Bayhan, T. (2015). Büyük Menderes deltasından avlanan kefal (Leuciscus cephalus) ve levreklerde (Perca fluviatilis) Cu, Zn ve Cd düzeylerinin belirlenmesi ve metallotiyonin ile ilişkisinin araştırılması (Master's thesis, Adnan Menderes Üniversitesi, Sağlık Bilimleri Enstitüsü).
  • Çimen, ICÇ., ve Serdar O. 2022. Effect of Metallothıoneın Levels in Gammarus pulex Exposed to Copper And Copperoxıde Nanopartıcles. Ecological Life Sciences 17(2):59-67.
  • Shariati, F., & Shariati, S. (2011). Review on methods for determination of metallothioneins in aquatic organisms. Biological trace element research, 141(1), 340-366.
  • Geffard, A., Amiard, J. C., & Amiard-Triquet, C., (2002a). Use of metallothionein in gills from oysters (Crassostrea gigas) as a biomarker: seasonal and intersite fluctuations. Biomarkers, 7(2), 123-137.
  • Geffard, A., Geffard, O., His, E., & Amiard, J.C., (2002b). Relationships between metal bioaccumulation and metallothionein levels in larvae of Mytilus galloprovincialis exposed to contaminated estuarine sediment elutriate. Marine Ecology Progress Series, 233, 131-142.
  • Geffard, A., Amiard-Triquet, C., & Amiard, J. C. (2005). Do seasonal changes affect metallothionein induction by metals in mussels, Mytilus edulis?. Ecotoxicology and Environmental Safety, 61(2), 209-220.
  • Zhang, L., & Wang, W. X. (2005). Effects of Zn pre-exposure on Cd and Zn bioaccumulation and metallothionein levels in two species of marine fish. Aquatic Toxicology, 73(4), 353-369.
  • Mosleh, Yahia Y.; Parıs-Palacıos, Severine; Bıagıantı-Rısbourg, Sylvie. Metallothioneins induction and antioxidative response in aquatic worms Tubifex tubifex (Oligochaeta, Tubificidae) exposed to copper. Chemosphere, 2006, 64.1: 121-128.
  • Khati, W., Ouali, K., Mouneyrac, C., & Banaoui, A. (2012). Metallothioneins in aquatic invertebrates: their role in metal detoxification and their use in biomonitoring. Energy Procedia, 18, 784-794.
  • Zhang, Y.S., Schlenk, D., 1995. Induction of hepatic metallothionein expression from cadmium-induced channel catfish (Ictalurus punctatus).Enivron. Toxicol. Chem. 14, 1425–1431.
  • Paris-Palacios, S., Biagianti-Risbourg, S., Vernet, G., 2000. Metallothionein analyzed in liver of Rutilus rulilus exposed to Cu with three methods: metal summation, SH determination and original spectrofluorimetric method. Comp. Biochem. Physiol. Part C 126, 122–133.
  • Barka, S., Pavillon, J.F., Amiard, J.C., 2001. Influence of different essential and non-essential metals on MTLP levels in the copepod Tigriopus brevicornis. Comp. Biochem. Physiol. Part C 128, 479–493.
  • Pourang, N., Dennis, J.H., 2005. Distribution of trace elements in tissues of two shrip species from the Persian Gulf and roles of metallothionein in their redistribution. Environ. Int. 31, 325–341.
  • Mao, H., Wang, D. H., & Yang, W. X. (2012). The involvement of metallothionein in the development of aquatic invertebrate. Aquatic toxicology, 110, 208-213.
  • Danabas, D., Ates, M., Tastan, B. E., Cimen, I. C. C., Unal, I., Aksu, O., & Kutlu, B. (2020). Effects of Zn and ZnO nanoparticles on Artemia salina and Daphnia magna organisms: toxicity, accumulation and elimination. Science of the total environment, 711, 134869.