Serviks Kanseri Tedavisinde Kullanılan Radyoterapi Tekniklerinin Farklı Foton Enerjilerinin Dosimetrik Karşılaştırılması

Bu çalışma 2014-2017 yılları arasında Bursa Uludağ Üniversitesinde radyoterapi tedavisi almış,  serviks kanseri tanılı 10 hastanın arşiv materyali kullanılarak retrospektif olarak yapılmıştır. Serviks kanseri radyoterapisinde kullanılan enerji seviyelerinin kullanılması amaçlanmıştır. Tedavi planlamasında kullanılan volumetrik ayarlı ark terapi (VMAT) ve yoğunluk ayarlı ark terapi(YART) 7 alan tekniği için 6 MV  ve  15 MV  enerjili foton enerjisi kullanılarak her hastaya özel 4 farklı planlama yapılmıştır. Planlanan hedef hacme 28 fraksiyondan 50.4 Gy doz verilmiş ve kritik organ olarak rektum, mesane, ince bağırsak, sağ ve sol femur başları konturlanarak dozimetrik karşılaştırma amaçlanmıştır. Ayrıca tedavi planı değerlendirme parametrelerinden Conformite İndeksi ve Homojenite İndeksi verileri de değerlendirilmiştir. Karşılaştırmalar sonucunda en uygun PTV doz homojenitesi, CI değerini VMAT 15 MV, en iyi HI değerini YART 15 MV sağlamıştır. Mesane ve Rectum Dort  dozları açısından en iyi VMAT 6 MV tekniği, ince bağırsak Dmax değeri YART 15 MV tekniğinde elde edilmiştir. Tüm tekniklerde doz dağılımları kabul edilebilir sınır içerisinde olduğu gözlemlenmiştir Saçılan doz ve ikincil kanser riski düşünüldüğünde VMAT 6 MV tekniği diğer tekniklere oranla daha üstün bulundu. Bu yüzden yan etkiler ve çift oluşum meydana gelme ihtimali göz önüne alındığında tedavi tekniği olarak VMAT 6 MV tekniğinin uygun olduğunu desteklemekteyiz.

The Dosimetric Comparison of the Different Photon Energy of Radiotherapy Techniques Used in the Treatment of Cervical Cancer

In this study, it was evaluated retrospectively the result of  10 patients with cervical cancer who treated with radiotherapy treatment in Bursa Uludağ University between 2014-2017 years. Four different plans were performed using 6 MV and 15 MV photon energies both for volumetric modulated arc therapy (VMAT) and intensity modulated arc therapy (IMRT) 7 field technique used in the treatment planning. All patient were to receive  50.4 Gy dose from 28 fractions. Our aim to organ at risks(OAR) such as; the rectal, bladder, small intestine, right and left femoral heads also Conformity Index(CI) and Homogeneity Index(HI) and total numbers of monitor units  were evaluated. As a result of the comparison, the optimal PTV dose homogeneity, the CI value was better in VMAT 15 MV plans and IMRT 15 MV plans showed the best HI values. Bladder and rectum doses were obtained in VMAT 6 MV technique,small intestine doses in IMRT 15 MV technique. Regarding to all planning techniques, dose distributions were within acceptable limits. VMAT 6 MV technique is superior to other techniques when considering the scattered dose and the risk of secondary cancer. Therefore, considering side effects and double effect, VMAT may be preferred as a treatment technique.

___

  • 1. Yadav, Girigesh, et al. “Dosimetric influence of photon beam energy and number of arcs on volumetric modulated arc therapy in carcinoma cervix: A planning study.” Reports of Practical Oncology & Radiotherapy 22.1 (2017): 1-9.
  • 2. https://hsgm.saglik.gov.tr/depo/birimler/kanser-db/istatistik/Turkiye_Kanser_Istatistikleri_2015.pdf
  • 3. Mundt AJ, Mell LK & Roeske JC (2003) Preliminary Analysis Of Chronic Gastrointestinal Toxicity In Gynecology Patients Treated With Intensity-Modulated Whole Pelvic Radiation Therapy. International Journal of Radiation Oncology* Biology* Physics, 56(5): 1354-1360.
  • 4. Georg P, Georg D, Hillbrand M, Kirisits C, & Pötter R (2006). Factors Influencing Bowel Sparing In Intensity Modulated Whole Pelvic Radiotherapy For Gynaecological Malignancies. Radiotherapy And Oncology, 80(1): 19-26.
  • 5. Kry SF, Salehpour M, Followill DS, et al. The calculated risk offatal secondary malignancies from intensity-modulatedradiation therapy. Int J Radiat Oncol Biol Phys2005;62(4):1195–203.4
  • 6. Rao M, Yang W, Chen F, Sheng K, Ye J, Mehta V, et al. Comparison of Elekta VMAT with helical tomotherapy and fixed field YART: Plan quality, delivery efficiency and accuracy. Med Phys 2010;37:1350 9.
  • 7. ICRU Report 83, Journal of the ICRU, Vol. 10, No. 1. Oxford University Press; 2010
  • 8. Lehman, M., & Thomas, G. (2001). Is concurrent chemotherapy and radiotherapy the new standard of care for locally advanced cervical cancer?. International Journal of Gynecological Cancer, 11(2), 87-99.
  • 9. Keys HM, Bundy BN, Stehman FB et al. Cisplatin, radiation and adjuvan thysterectomy compared with radiation and adjuvan thysterectomy for bulky stage IB cervical carcinoma. N Eng J Med 1999; 340: 1154-1161.
  • 10. Peters AW, Liu PY, Barret RJ et al. Concurrent chemotherapy and pelvic radiation therapy compared wih pelvic radiation therapy alone as adjuvant therapy after radical surgery in high-risk early-stage cancer of the cervix. J Clin Oncol 2000; 18: 1606-1613.
  • 11. Roeske J, Lujan A, Rotmensch J, Waggoner SE, Yamada D, Mundt AJ. Intensity-modulated whole pelvic radiationtherapy in patients with gynecologic malignancies. Int J Radiat Oncol Biol Phys 2000:8:1613–1621
  • 12. Kumar, L., Yadav, G., Raman, K., Bhushan, M., & Pal, M. (2015). The dosimetric impact of different photon beam energy on RapidArc radiotherapy planning for cervix carcinoma. Journal of Medical Physics/Association of Medical Physicists of India, 40(4), 207
  • 13. Sternick ES, Bleier AR, Carol MP, Curran BH, Holmes TW, Kania AA, et al. Intensity modulated radiation therapy: What photon energy is best? In: Leavitt DD, editor. Proc. of 12th International Conference on the use of Computers in Radiation Therapy Salt Lake City, Utah. Madison, WI: Medical Physics Publishing; 1997. pp. 418–9.
  • 14. Deng, X., Han, C., Chen, S., Xie, C., Yi, J., Zhou, Y., ... & Jin, X. (2017). Dosimetric benefits of intensity‐modulated radiotherapy and volumetric‐modulated arc therapy in the treatment of postoperative cervical cancer patients. Journal of applied clinical medical physics, 18(1), 25-31.
  • 15. The effect of beam energy and number of fields on photon-based IMRT for deep-seated targets. Pirzkall A1, Carol MP, Pickett B, Xia P, Roach M 3rd, Verhey LJ. Int J Radiat Oncol Biol Phys. 2002 Jun 1;53(2):434-42.
  • 16. Influence of photon energy on the quality of prostate intensity modulated radiation therapy plans based on analysis of physical indices. J Med Phys. 2011 Jan;36(1):29-34. doi: 10.4103/0971-6203.75469.
  • 17. Jia, M. X., Zhang, X., Yin, C., Feng, G., Li, N., Gao, S., & Liu, D. W. (2014). Peripheral dose measurements in cervical cancer radiotherapy: a comparison of volumetric modulated arc therapy and step-and-shoot IMRT techniques. Radiation Oncology, 9(1), 61.
  • 18. Sun M., Ma L. Treatment of exceptionally large prostate cancer patients with low-energy intensity-modulated photons. J Appl Clin Med Phys. 2006;7(4):43–49.
  • 19. Kry, S. F., Salehpour, M., Followill, D. S., Stovall, M., Kuban, D. A., White, R. A., & Rosen, I. I. (2005). The calculated risk of fatal secondary malignancies from intensity-modulated radiation therapy. International Journal of Radiation Oncology* Biology* Physics, 62(4), 1195-1203.
Uludağ Üniversitesi Tıp Fakültesi Dergisi-Cover
  • ISSN: 1300-414X
  • Başlangıç: 1975
  • Yayıncı: Seyhan Miğal