YER ALTI ARAÇ OTOPARKLARINDA JET FAN TİPİ VE FARKLI HAVA DEĞİŞİM SAYILARINA GÖRE YANGIN SENARYOSUNUN HESAPLAMALI AKIŞKANLAR DİNAMİĞİ İLE İNCELENMESİ

Bu çalışmada kapalı bir otoparkın BS 7346-7, 2013 standardına göre 4 MW yangın yükü altında yangın analiz sonuçları incelenmiştir. On ve 15 hava değişiminin, radyal ve eksenel jet fan kullanımının yangın üzerindeki etkileri araştırılmıştır. Analizler PyroSim yazılımında yapılmıştır. Analizlerde eleman sayısından bağımsızlık çalışması yapılmıştır. Türbülans modeli olarak büyük girdap simülasyonu (BGS) modelini kullanılmıştır. On hava değişimli analizlerde radyal jet fanlı sonuçları; hava hızı 0,9154 m/s, ortalama sıcaklık 40,13°C, CO gaz seviyesi 100 ppm. Eksenel fanda; hava hızı 0,9176 m/s, ortalama sıcaklık 38,02°C, CO gazı seviyesi, 61,5 ppm, görüş mesafesi sonuçları elde edilmiştir. Görüş mesafesi her iki fan için 3 m ve elde edilmiştir. On beş hava değişimli analizde radyal fan sonuçları hava hızı 1,324 m/s, ortalama sıcaklık 29,98°C elde edilirken eksenel jet fanda hava hızı 1,318 m/s, ortalama sıcaklık, 28,15°C olarak elde edilmiştir. Görüş mesafesi ve CO miktarı her iki fan için 30 m ve 1 ppm olarak tespit edilmiştir. Çalışmada 10 hava değişim oranının CO oranı ve görüş mesafesi açısından yetersiz olduğu tespit edilmiştir. Fan farklılığının ise çok etkili olmadığı tespit edilmiştir.

Investigation of Fire Scenario According to Jet Fan Type and Different Air Exchange Number in Underground Vehicle Parking Areas with Computational Fluid Dynamics

In this study, fire analysis results of a closed car park under 4 MW fire load according to BS 7346-7, 2013 standard were examined. The effects of 10 and 15 air changes, the use of radial and axial jet fans on the fire were investigated. Analysis were made in PyroSim software. Mesh independence was studied. Large Eddy Simulation model was used as turbulence model. In the analyzes with 10 air changes, the results of the radial fan; velocity was 0.9154 m/s, ave. temperature was 40.13°C, CO gas level is 100 ppm. For axial fan, velocity was 0.9176 m/s, ave. temperature is 38.02°C , CO gas level 61.5 ppm, visibility results were obtained. Visibility distance of 3 m for both fans was obtained. In the analysis with 15 air changes, the results of the radial fan; velocity were 1,324 m/s, ave. temperature was 29.98°C. For axial jet fan velocity was 1,318 m/s and ave. temperature was 28.15°C. Visibility distance and CO amount were determined as 30 m and 1 ppm for both fans. In the study, it was determined that 10 air changes was insufficient for CO rate and visibility. It has been determined that the axial fan is more effective.

___

  • 1. Alarko-Carrier. (2007). Fanlar: Özellikleri ve Analiz. Alarko-Carrier Teknik Bülten, (24).
  • 2. Aveiro, J. L., & Viegas, J. C. (2010). Smoke control in an underground car park with impulse ventilation. V European Conference on Computational Fluid Dynamics, Lisbon: June 14–17.
  • 3. Bacak, A. (2017). Numerical Investigation of Impulse Ventilation System in Underground Car Park, International Journal of Engineering and Applied Sciences, 4, 14–16.
  • 4. Bakır, M.S, (2019). Yer altı araç otoparklarında jet fan havalandırma sistemlerinin ve fan yerleşim optimizasyonun hesaplamalı akışkanlar dinamiği ile analizi. Bursa Teknik Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi
  • 5. Binaların Yangından Korunması Hakkında Yönetmelik. (2015). T.C. Resmî Gazete, 29411, 09 Temmuz 2015.
  • 6. Chow, W. K. (1998). On safety systems for underground car parks, Tunnelling and Underground Space Technology, 13 (3), 281–287. doi:10.1016/S0886-7798(98)00060-1
  • 7. Çakır, M.T. & Ün, Çağrı. (2020). CFD Analysis of Smoke and Temperature Control System of Car Park Area with Jet Fans. Journal of Engineering Research and Reports. 27-40. 10.9734/jerr/2020/v13i317102.
  • 8. Çengel, Y. & Cimbala J.M. (2020) Akışkanlar Mekaniği, Palme Yayınevi, İstanbul
  • 9. Joyeux, D. (1997). Natural Fires in Closed Car Parks: Car Fire Tests (INC-96/ 294d-DJ/NB). Saint-Aubin: CTICM.
  • 10. Khatoon, S., & Shah, A. N. (2016). Prediction of Comfort Parameters for Naturally Ventilated Underground Car Parks, The Nucleus, 53 (3), 214-220.
  • 11. Kmecová M., Krajčík M., Strakov Z., (2019).Designing Jet Fan Ventilation for an Underground Car Park by CFD Simulations. Periodica Polytechnica Mechanical Engineering, 63(1), pp. 39–43. https://doi.org/10.3311/PPme.12529
  • 12. Lu, S., Wang, Y. H., Zhang, R. F., & Zhang, H. P. (2011). Numerical study on impulse ventilation for smoke control in an underground car park. The 5th Conference on Performance-based Fire and Fire Protection Engineering, 11, 369–378. doi: 10.1016/j.proeng.2011.04.671
  • 13. Mangs, J., & Keski-Rahkonen, O. (1994a). Characterization of the fire behaviour of a burning passenger car. Part I: Car fire experiments. Fire Safety Journal, 23 (1), 17–35. doi:10.1016/0379- 7112(94)90059-0
  • 14. Mangs, J., & Keski-Rahkonen, O. (1994b). Characterization of the fire behaviour of a burning passenger car. Part II: Parametrization of measured rate of heat release curves. Fire Safety Journal, 23 (1), 37–49. doi:10.1016/0379-7112(94)90060-4
  • 15. Merci, B., Taerwe, L., Vandevelde, P., Van den Bulck, E., Van den Schoor, F., van Beeck, J., & Vantomme, J. (2011). Fundamental design approaches for improvement of the Fire Safety in Car Parks (080010). Flanders: IWT Agency for Innovation by Science and Technology.
  • 16. Morgan, H. P., & De Smedt, J.-C. (2004). Hot smoke tests: testing the design performance of smoke and heat ventilation systems and of impulse ventilation. International Journal on Engineering Performance-Based Fire Codes, 6 (1), 7–18.
  • 17. NFPA Standards. (2014). NFPA 130: Standard for Fixed Guideway Transit and Passenger Rail Systems.
  • 18. Senveli, A., Dizman, T., Celen, A., Bilge, D., Dalkılıç, A. S., & Wongwises, S. (2015). CFD Analysis of Smoke and Temperature Control System of an Indoor Parking Lot with Jet Fans. Journal of Thermal Engineering, 1 (2), 116-130. doi:10.13140/2.1.4336.2568
  • 19. Shipp, M. (2010). Fire Spread In Car Parks (BD2552). London: Department for Communities and Local Government, UK.
  • 20. Shipp, M., & Spearpoint, M. (1995). Measurements of the severity of fires involving private motor vehicles. Fire and Materials, 19 (3) 143-151. doi:10.1002/fam.810190307
  • 21. Smagorinsky, J. (1963). General circulation experiments with the primitive equations. Monthly Weather Review, 91 (3) 99-164. doi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
  • 22. Sultansu, S. & Onat, A. (2020). The Cfd Analysis of Ventilation and Smoke Control System with Jet Fan in a Parking Garage. International Journal of Advances in Engineering and Pure Sciences, 32 (1), 89-95. DOI: 10.7240/jeps.522037
  • 23. The BSI Standards. (2013). BS 7346-7: 2013 Components for smoke and heat control systems. Code of practice on functional recommendations and calculation methods for smoke and heat control systems for covered car parks.
  • 24. Umamaheswararao, L. (2017). Optimum Design of Impulse Ventilation System in Underground Car Parking Basement by Using CFD Simulation. Industrial Engineering & Management, 6 (4), 4–9. doi: 10.4172/2169-0316.1000238
  • 25. Viegas, J. C. (2006). The use of jet fans to improve the air quality in underground car parks. Healthy Buildings: Creating a Healthy Indoor Environment for People, 4, 227–232.
  • 26. Viegas, J. C. (2009). The use of impulse ventilation to control pollution in underground car parks. International Journal of Ventilation, 8 (1), 57–74. doi:10.1080/14733315.2006.11683832
  • 27. Viegas, J. C., & Saraiva, J. G. (2001). CFD study of smoke control inside enclosed car parking using jet fans. In InterFlam 2001: 9 th International Fire Science & Engineering Conference, 1465–1470.
  • 28. Viegas, J. C., & Saraiva, J. G. (2002). Avaliação com recurso a CFD da aplicação de ventiladores de impulso a parques de estacionamento cobertos. Proceedings of Métodos Numéricos en Ingenieria V. Madrid: SEMNI.
  • 29. Zhao, B., & Kruppa, J. (2004). Structural behaviour of an open car park under real fire scenarios. Fire and Materials, 28 (24), 269–28
Uludağ Üniversitesi Mühendislik Fakültesi Dergisi-Cover
  • ISSN: 2148-4147
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2002
  • Yayıncı: BURSA ULUDAĞ ÜNİVERSİTESİ > MÜHENDİSLİK FAKÜLTESİ
Sayıdaki Diğer Makaleler

BIM Tabanlı LEED Endüstriyel Bina ve LEED Olmayan Endüstriyel Bina İçin Karşılaştırmalı Çalışma

Senem SEYİS

FCAW Prosesi ile Yapısal Çeliklerin Birleştirilmesinde Isı Girdisinin Mikro Yapı ve Mekanik Özelliklere Etkisi

Uğur GÜROL

DİZEL MOTORLARDA DİMETİL ETER KULLANIMININ HC EMİSYONLARINA OLAN ETKİLERİ ÜZERİNE BİR DERLEME ÇALIŞMASI

İsmet SEZER

REEL SİNÜSLERDE AYRIK FOURIER DÖNÜŞÜMÜNÜN ÜÇ ÖRNEĞİNE DAYALI FREKANS KESTİRİMİ

Hasan BAYAZİT, Erdoğan DİLAVEROĞLU

ELEKTRİK İHTİYACININ SAĞLANMASINDA HİBRİT YENİLENEBİLİR ENERJİ SİSTEM TASARIMI: BURSA TEKSTİL FABRİKASI ÖRNEĞİ

Melike YALILI KILIÇ, Sümeyye ADALI, Melek AYDIN

MİLİMETRE DALGA BANDINDA İNVAZİF OLMAYAN BİR YÖNTEM İLE SIVILARDA GLİKOZ SEVİYESİNİN BELİRLENMESİ

Ömer Faruk GÖKTAŞ, İlyas ÇANKAYA, Esra ŞENGÜN ERMEYDAN

YER ALTI ARAÇ OTOPARKLARINDA JET FAN TİPİ VE FARKLI HAVA DEĞİŞİM SAYILARINA GÖRE YANGIN SENARYOSUNUN HESAPLAMALI AKIŞKANLAR DİNAMİĞİ İLE İNCELENMESİ

Mustafa Sinan BAKIR, Kemal Furkan SÖKMEN

Covid-19 Kapanma Önlemlerinin Türkiye’deki Hava Kirleticilerine Etkisi

Sevgi GÜNEŞ DURAK

Alüminyum Yüzey Plakası / Genişletilmiş Polipropilen Köpük Çekirdekli Sandviç Levhaların Çarpışma Enerjisi Sönümleme ve Mukavemet Özelliklerinin Deneysel Olarak İncelenmesi

İbrahim Kürşad TÜRKOĞLU

Elektromekanik Eyletimli Bir Kanat Yükleme Cihazının Dinamik Modellemesi ve Denetimi

Bülent ÖZKAN