BIM Tabanlı LEED Endüstriyel Bina ve LEED Olmayan Endüstriyel Bina İçin Karşılaştırmalı Çalışma

Bu çalışma BIM ve LEED kullanarak sürdürülebilir bir endüstriyel binanın mimari ve statik tasarımlarını yapmayı ve LEED endüstriyel bina ve LEED olmayan endüstriyel binayı karşılaştırmayı amaçlamaktadır. Bu kapsamda, su ve enerji verimli sistemlerle ilgili ek maliyetler analiz edilerek ilgili başabaş noktaları hesaplanmıştır. Araştırma amacını gerçekleştirmek için literatür taraması ve vaka çalışması yapılmıştır. Vaka analizinde, betonarme bir endüstriyel bina Autodesk Revit 2021 ile Yeni İnşaat için LEED v4.1 BD+C değerlendirme sistemi altındaki seçilen sürdürülebilirlik kriterleri göz önünde bulundurularak tasarlanmıştır. LEED endüstriyel binası, 73 puan ve LEED Gold sertifikası almayı sağlayan 31 kredi ve 8 ön koşulu yerine getirebilmektedir. LEED endüstriyel binanın başlangıç maliyeti 154.222.607 TL iken, LEED olmayan endüstriyel binanın başlangıç maliyeti 139.080.060 TL'dir. LEED endüstriyel binasında kullanılan enerji verimli sistemlerin maliyeti için başabaş noktası 14 yıldır. LEED endüstriyel binasında kullanılan su verimli sistemlerin maliyeti için başabaş noktası 8 yıldır. Sonuçlar, LEED endüstriyel binalarının tasarım gereksinimleri ve enerji, su ve maliyet performansı hakkında yapıcı bilgiler sağlayarak mimarlık, mühendislik ve inşaat endüstrisine ve literatürüne katkıda bulunur.

COMPARATIVE STUDY FOR BIM-BASED LEED INDUSTRIAL BUILDING AND NON-LEED INDUSTRIAL BUILDING

This study intends to do architectural and structural designs of a sustainable industrial building using BIM and LEED as well as compare the LEED industrial building and non-LEED industrial building. In this scope, the additional costs related to water and energy efficient systems were analyzed to calculate the respective break-even points. Literature review and case study were performed to achieve the research objective. In the case study, a reinforced concrete industrial building was designed via Autodesk Revit 2021 considering the selected sustainability criteria under the LEED v4.1 BD+C for New Construction rating system. The LEED industrial building can fulfill 31 credits and 8 prerequisites which allow to obtain 73 points and LEED Gold certificate. The initial cost of LEED industrial building is 154.222.607 TL while the initial cost of non-LEED industrial building is 139.080.060 TL. Break-even point for the cost of energy-efficient systems utilized in the LEED industrial building is 14 years. Breakeven point for the cost of water-efficient systems utilized in the LEED industrial building is 8 years. Results contribute to the architecture, engineering and construction industry and literature by providing constructive information about the design requirements and energy, water, and cost performance of the LEED industrial buildings.

___

  • 1. Alliance to Save Energy (ASE), Promoting Energy-Efficient Buildings in the Industrial Sector (2009). Written by Aiming Zhou, Vestal Tutterow, Jeffrey Harris, Paul Bostrom. https://forum.cee1.org (Accessed in: 12.01.2022)
  • 2. Alliance to Save Energy (ASE), Promoting Energy-Efficient Buildings in the Industrial Sector, 2009. Written by Aiming Zhou, Vestal Tutterow, Jeffrey Harris, Paul Bostrom. https://forum.cee1.org Accessed in: 19.12.2021)
  • 3. Ansah, M.K. Chen, X., Yang, H., Lu, L. and Lam, P.T.I. (2019). "A review and outlook for integrated BIM application in green building assessment". Sustainable Cities and Society, 48, 101576. doi:10.1016/j.scs.2019.101576
  • 4. Azhar, S. Carlton, W.A., Olsen, D. and Ahmad, I. (2010). "Building information modeling for sustainable design and LEED® rating analysis." Automation in Construction, 20(2), 217-224. doi: 10.1016/j.autcon.2010.09.019
  • 5. Copenhagen Resource Institute, 2014. Resource efficiency in the building sector, http://ec.europa.eu/environment/eussd/pdf/Resource%20efficiency%20in%20the%20building%20sector.pdf (Accessed in: 19.12.2021)
  • 6. Energy Star, (2022). Access address: https://www.energystar.gov/buildings/about-us/facts-and-stats (Accessed in: 12.01.2022)
  • 7. European Commission, 2015. “Savings and benefits of global regulations for energy efficient products”, https://ec.europa.eu/energy/sites/ener/files/documents/Cost%20of%20Non-World%20- %20Final%20Report.pdf (Accessed in: 12.01.2022)
  • 8. Global Alliance for Buildings and Construction (2019). “2019 Global Status Report for Buildings and Construction: Towards a zero-emissions, efficient and resilient buildings and construction sector”. https://wedocs.unep.org/bitstream/handle/20.500.11822/30950/2019GSR.pdf?sequence=1&isAllowed=y (Accessed in: 12.01.2022)
  • 9. Greening America’s Schools (2006). Written by Gregory Kats https://www.usgbc.org/resources/greening-america039s-schools-costs-and-benefits (Accessed in: 02.02.2022)
  • 10. International Energy Agency (IEA) (2017). “IEA World Energy Statistics and Balances 2017: Energy Technology Perspectives 2017”, IEA/OECD, Paris, www.iea.org/etp (Accessed in: 12.01.2022)
  • 11. International Energy Agency (IEA) (2022). “World energy statistics and balances”. https://www.iea.org/topics/energyefficiency/buildings/ (Accessed in: 12.01.2022)
  • 12. Jalaei, F. and Jrade, A. (2015). " Integrating building information modeling (BIM) and LEED system at the conceptual design stage of sustainable buildings." Sustainable Cities and Society, 18, 95-107. doi:10.1016/j.scs.2015.06.007
  • 13. Kibert, C. (2016). Sustainable Construction: Green Building Design and Delivery, 4th Edition. ISBN: 978-1-119-05517-4, 2016
  • 14. Kibert, J., 1994.“Principles and a Model of Sustainable Construction”. Proceedings of the First International Conference on Sustainable Construction, 1-9, Tampa, Florida, USA, 6-9 November 1994 life-cycle assessments”. Building and Environment, 173 (2020), 106703. doi:10.1016/j.buildenv.2020.106703
  • 15. Lu, Y. Wu, Z., Chang, R. and Li, Y. (2017). "Building Information Modeling (BIM) for green buildings: A critical review and future directions." Automation in Construction, 83, 137-144. doi: 10.1016/j.autcon.2017.08.024
  • 16. North American Association for Environmental Education (NAAEE) (2016). “eeworks: From Anecdotes to Evidence: Demonstrating the power of environmental education”, https://cdn.naaee.org/sites/default/files/eeworks/files/k-12_student_key_findings.pdf . (Accessed in: 12.01.2022)
  • 17. Schwartz, Y. and Raslan, R. (2013). "Variations in results of building energy simulation tools, and their impact on BREEAM and LEED ratings: A case study." Energy and Buildings, 62, 350-359. doi: 10.1016/j.enbuild.2013.03.022
  • 18. Seyis, S (2015). A decision making support model to determine appropriate credits for green building certification based on project delivery attributes. PhD Dissertation, Politecnico di Milano, Milan, Italy
  • 19. Seyis, S. (2019). “Pros and Cons of Using Building Information Modeling in the AEC Industry”. Journal of Construction Engineering and Management, 145(8), 04019046. doi:10.1061/(ASCE)CO.1943- 7862.0001681
  • 20. Seyis, S. 2022. “Case Study for Comparative Analysis of BIM-based LEED Building and Non-LEED Building” Pamukkale University Journal of Engineering Sciences, 28(3), 418 – 426. doi: 10.5505/pajes.2021.85668
  • 21. Seyis, S. and Ergen, E. (2017). “A decision making support tool for selecting green building certification credits based on project delivery attributes”. Building and Environment, 126(12), 107–118. doi: doi.org/10.1016/j.buildenv.2017.09.028
  • 22. Seyis, S. Isin Guven, G. and Bayar, B. (2021). “BIM-based energy analysis and design tools for LEED cerification” Uludağ University Journal of The Faculty of Engineering, 26(3), 987- 1002. doi: 10.17482/uumfd.915932
  • 23. Seyis, S.(2020). “Mixed method review for integrating building information modeling and
  • 24. Singh, A., Syal, M., Grady, S.C., Korkmaz, S. 2009. “Effect of Green Buildings on Employee Health and Productivity”, 100(9): 1665-1668, American Journal of Public Health, https://doi.org/10.2105/AJPH.2009.18068
  • 25. Solla, M., Ismail, L.H. and Milad, A. (2019). "Measuring the feasibility of using of BIM application to facilitate GBI assessment process," Journal of Building Engineering, 25, 100821. doi: 10.1016/j.jobe.2019.100821
  • 26. Statista, 2021. https://www.statista.com/statistics/323359/leed-registered-projects-in-the-united-states-by-type/ , (Accessed in 15.01.2022)
  • 27. Sustainable buildings market study, 2019. https://ramboll.com/-/media/files/rgr/documents/markets/buildings/s/sustainable-buildings-market-study_2019_web.pdf?la=en (Accessed in 15.01.2022)
  • 28. U.S. Dept. of Energy, Efficiency & Renewable Energy, 2014. Save (More) Energy Now with Intelligent Industrial Buildings, https://www.energy.gov/ (Accessed in: 19.12.2021)
  • 29. U.S. DOE, Energy Information Administration, 2002. Manufacturing Energy Consumption Survey, https://www.eia.gov/consumption/manufacturing/index.php (Accessed in: 19.12.2021)
  • 30. U.S. Environmental Protection Agency (EPA), 2016. “Green Building”, https://archive.epa.gov/greenbuilding/web/html/about.html (Accessed in: 21.06.2022)
  • 31. U.S. Green Building Council (USGBC), LEED v4.1 Building Design and Construction Guideline, 2021
  • 32. UN Environment and International Energy Agency (2017). “Towards a zero-emission, efficient, and resilient buildings and construction sector. Global Status Report 2017”. https://www.worldgbc.org/sites/default/files/UNEP%20188_GABC_en%20%28web%29.pdf (Accessed in: 12.01.2022)
  • 33. UN World Commission on Environment and Development. 1987. Our Common Future. Oxford: Oxford University Press
  • 34. US Department of Energy, Energy Information Administration (EIA) 2019. International Energy Outlook 2019., Washington, DC, https://www.eia.gov/outlooks/ieo/pdf/ieo2019.pdf.
  • 35. W. McDonough, The Hannover Principles: Design for Sustainability, William McDonough and Partners, Charlottesville, VA, 1992. www.mcdonough.com/wp-content/uploads/2013/03/Hannover- Principles-1992.pdf
  • 36. Wang, Q,, H, Y., Hao, J., Lv, N., Li, T.Y. and Tang, B.J. (2019). “Exploring the influences of green industrial building on the energy consumption of industrial enterprises: A case study of Chinese cigarette manufactures” Journal of Cleaner Production, 231(5), doi: 10.1016/j.jclepro.2019.05.136
  • 37. Worden, K. Hazer, M., Pyke, C. and Trowbridge, M. (2020). "Using LEED green rating systems to promote population health." Building and Environment, 172(4), 106550. doi:10.1016/j.buildenv.2019.106550
  • 38. World Green Building Council (WGBC), 2013. “THE BUSINESS CASE FOR GREEN BUILDING, Review of the Costs and Benefits for Developers, Investors and Occupants”, https://www.worldgbc.org/sites/default/files/Business_Case_For_Green_Building_Report_WEB_2013-04-11-2.pdf (Accessed in: 12.01.2022)
  • 39. World Green Building Council (WGBC), 2016. “Building the business case: Health, Wellbeing and Productivity in Green Offices”, https://www.worldgbc.org/sites/default/files/WGBC_BtBC_Dec2016_Digital_Low-MAY24_0.pdf (Accessed in: 12.01.2022)
  • 40. Yin, RK. Case Study Research: Design and Methods, second ed., SAGE, Thousand Oaks, CA, 1994
Uludağ Üniversitesi Mühendislik Fakültesi Dergisi-Cover
  • ISSN: 2148-4147
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2002
  • Yayıncı: BURSA ULUDAĞ ÜNİVERSİTESİ > MÜHENDİSLİK FAKÜLTESİ