UV-C AKTİVASYONU İLE ÜRETİLMİŞ SÜLFAT RADİKALLERİNİN BAKTERİ İNAKTİVASYONUNA ETKİSİ

Geleceğin en büyük küresel risklerinden biri olabilecek su krizleri, kaliteli içme suyuna ulaşabilmede sıkıntıların yaşanmasını da beraberinde getirecektir. İçilebilir nitelikte kaliteli içme suyu temininde en önemli noktalardan biri mikroorganizma dezenfeksiyonudur. Son zamanlarda içme suyu dezenfeksiyonunda ileri oksidasyon prosesleri alternatif olarak uygulanmaya başlanmıştır. İleri oksidasyon yöntemleri içinde son derece reaktif ve seçici olan sülfat radikalleri, giderek ön plana çıkmaktadır. Bu çalışmada, kanalizasyon suyundan izole edilmiş E.coli bakterisinin dezenfeksiyonunda, UV-C ile aktif hale getirilmiş sülfat radikallerinin giderim verimine etkisi incelenmiştir. Sülfat radikali bazlı fotokimyasal ileri oksidasyon prosesinde (UV-C+K2S2O8) dört farklı konsantrasyonda K2S2O8 (0,5, 1, 2 ve 3 mmol/L) kullanılmıştır. UV-C radyasyonu ile aktifleştirilen K2S2O8’in konsantrasyonunun artması ile E.coli inaktivasyonunun arttığı belirlenmiştir. UV-C prosesine, 2 mmol/L K2S2O8 ilave edilmesi ile 30 saniye içinde yaklaşık 2,7 logluk bir bakteri giderim artışı elde edilmiştir. 5,48 log E.coli inaktivasyonu sağlanması için gerekli süre, 1 mmol/L K2S2O8 kullanıldığı durumda 60 saniyede iken, 2 mmol/L K2S2O8 kullanıldığında 30 saniye olarak tespit edilmiştir. K2S2O8 konsantrasyonu 3 mmol/L’ ye çıktığında bu süre 8 saniyeye düşmüştür. Süredeki bu azalma ileri oksidasyon prosesinin elektrik maliyetini önemli ölçüde azaltacaktır.

Effect of Sulfate Radicals Produced by UV-C Activation on Bacterial Inactivation

Water crises, which may be one of the biggest global risks of the future, will bring along difficulties in accessing quality drinking water. Microorganism disinfection is one of the most important points in supplying quality drinking water. Advanced oxidation processes have been started to be applied as an alternative in drinking water disinfection recently. Sulfate radicals, which are highly reactive and selective among advanced oxidation methods, are increasingly come into prominance. In this study, the effect of sulfate radicals activated by UV-C on the removal of E.coli isolated from sewage was investigated. Four different concentrations of K2S2O8 (0.5, 1, 2 and 3 mmol/L) were used UV-C+K2S2O8 process. It was determined that E.coli inactivation increased with the increasing the concentration of K2S2O8 activated by UV-C. Addition of 2 mmol/L K2S2O8 to the during UV-C process, an increase of approximately 2.7 log on bacteria removal was obtained within 30 seconds. The time required for 5.48 log E.coli inactivation was determined 60 and 30 seconds when 1 and 2 mmol/L K2S2O8 was used, respectively. This time decreased to 8 seconds when the K2S2O8 concentration increased to 3 mmol/L. This reduction in time will significantly reduce the electricity cost of the advanced oxidation process.

___

  • 1. Anipsitakis, G.P., Tufano, T.P., Dionysiou, D.D. (2008) Chemical and microbial decontamination of pool water using activated potassium peroxymonosulfate, Water Research, 42(12), 2899-2910. https://doi.org/10.1016/j.watres.2008.03.002
  • 2. Antoniou, M.G., de la Cruz, A.A., Dionysiou, D.D. (2010) Intermediates and reaction pathways from the degradation of microcystin-LR with sulfateradicals, Environmental Science & Technology, 44 (19), 7238-7244. https://doi.org/10.1021/es1000243
  • 3. Bianco, A., Polo-López, M.I., Fernández-Ibáñez, P., Brigante, M., Mailhot, G. (2017) Disinfection of water inoculated with Enterococcus faecalis using solar/Fe(III)EDDS-H2O2 or S2O82− process, Water Research, 118, 249-260. https://doi.org/10.1016/j.watres.2017.03.061
  • 4. Bolton, J.R., Bırcher, K.G., Tumas, C.A., Tolman, C.A. (1996) Figures of merit for the technical development and application of advanced oxidation processes, Journal of Advanced Oxidation Technologies, 1(1), 13-17. https://doi.org/10.1515/jaots-1996-0104
  • 5. Cedergren, M.I., Selbing, A.J., Löfman, O., Bengt, A.J. (2002) Chlorination by products and nitrate in drinking water and risk for congenital cardiac defects, Environmental Research, 89(2),124-130. doi:10.1006/enrs.2001.4362
  • 6. Dodds, L., King, W., Woolcott, C., Pole, J. (1999) Trihalomethanes in public water supplies and adverse birth outcomes, Epidemiology, 10(3), 233-237. PMID: 10230830. http://www.jstor.org/stable/3703588
  • 7. DSİ, (2018). T.C. Tarım ve Orman Bakanlığı Devlet Su İşleri Genel Müdürlüğü, Stratejik Plan 2019-2023. Erişim Adresi: http://www.sp.gov.tr/upload/xSPStratejikPlan/files/GUagq+DSI_2019- 2023_Donemi_Stratejik_Plani.pdf (Erişim Tarihi: 29.07.2021)
  • 8. EPDK, (2021). Elektrik Piyasası Tarifeler Listesi. Erişim Adresi: https://www.epdk.gov.tr/Detay/Icerik/3-0-1/tarifeler (Erişim Tarihi: 29.07.2021)
  • 9. Feng, P.(ret.), Weagant, S.D.(ret.), Grant M.A.(dec.), Burkhardt, W. (2020) Chapter 4: Enumeration of Escherichia coli and the Coliform Bacteria, Bacteriological Analytical Manual (BAM), Content current as of: 10/09/2020 Regulated Product(s) Food & Beverages, Erişim Adresi:https://www.fda.gov/food/laboratory-methods-food/bacteriological-analytical-manual-bam (Erişim Tarihi: 26.07.2021)
  • 10. Garkusheva, N., Matafonova, G., Tsenter, I., Beck, S., Batoev, V., Linden, K. (2017) Simultaneous atrazine degradation and E. coli inactivation by simulated solar photo-Fenton-like process using persulfate, Journal of Environmental Science and Health, Part A, 52(9), 849-855. doi: 10.1080/10934529.2017.1312188
  • 11. Gosselin, F., Madeira, L.M., Juhna, T., Block, J.C. (2013) Drinking water and biofilm disinfection by Fenton-like reaction, Water Research, 47(15), 5631-5638. https://doi.org/10.1016/j.watres.2013.06.036
  • 12. Guerra-Rodríguez, S., Rodríguez, E., Singh, D.N., Rodríguez-Chueca, J. (2018) Assessment of Sulfate Radical-Based Advanced Oxidation Processes for Water and Wastewater Treatment: A Review, Water, 10(12),1828. https://doi.org/10.3390/w10121828
  • 13. Hori, H., Yamamoto, A., Hayakawa, E., Taniyasu, S., Yamashita, N., Kutsuna, S., Arakawa, R. (2005) Efficient decomposition of environmentally persistent perfluorocarboxylic acids by use of persulfate as a photochemical oxidant, Environmental Science & Technology, 39(7): 2383-2388. doi: 10.1021/es0484754
  • 14. Johnson, R.L., Tratnyek, P.G., Johnson, R.O. (2008) Persulfate persistence under thermal activation conditions, Environmental Science & Technology, 42(24), 9350-9356. https://doi.org/10.1021/es8019462
  • 15. Kayaer, M., ve Çiftçi, S. (2018) ‘Su Sorunu’ ve Türkiye'nin Tatlısu Potansiyeli Çerçevesinde Türkiye’nin Sınıraşan Sularının Stratejik, Etik ve Hukuki Boyutlarının Değerlendirilmesi, Pesa International Journal of Social Studies, 4(3), 386-404. https://doi.org/10.25272/j.2149-8385.2018.4.3.02
  • 16. Kayaoğlu, S. (2003). İçme sularında ozonlamanın organik madde giderimi üzerine etkileri ve bromat kontrolü, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.
  • 17. Lau, T.K., Chu, W., Graham, N.J.D. (2007) The aqueous degradation of butylated hydroxyanisole by UV/S2O8(2-): study of reaction mechanisms via dimerization and mineralization, Environmental Science & Technology, 41(2), 613-619. https://doi.org/10.1021/es061395a
  • 18. Liang, C., Bruell, C. J., Marley, M. C., Sperry, K. L. (2004) Persulfate oxidation for in situ remediation of TCE. II. Activated by chelated ferrous ion, Chemosphere, 55 (9), 1225-1233. https://doi.org/10.1016/j.chemosphere.2004.01.030
  • 19. Liang, C., Bruell, C.J. (2008) Thermally activated persulfate oxidation of trichloroethylene: Experimental investigation of reaction orders, Industrial & Engineering Chemistry Research, 47, 2912–2918. https://doi.org/10.1021/ie070820l
  • 20. Liang, C., Guo, Y. (2010) Mass transfer and chemical oxidation of naphthalene particles with zerovalent iron activated persulfate, Environmental Science & Technology, 44 (21), 8203-8208. https://doi.org/10.1021/es903411a
  • 21. Marjanovic, M., Giannakis, S., Grandjean, D., de Alencastro, L.F., Pulgarin, C. (2018) Effect of μM Fe addition, mild heat and solar UV on sulfate radical-mediated inactivation of bacteria, viruses, and micropollutant degradation in water, Water Research, 140, 220-231. https://doi.org/10.1016/j.watres.2018.04.054
  • 22. Michael-Kordatou, I., Iacovou, M., Frontistis, Z., Hapeshi, E., Dionysiou, D.D., Fatta-Kassinos, D. (2015) Erythromycin oxidation and ERY-resistant Escherichia coli inactivation in urban wastewater by sulfate radical-based oxidation process under UV-C irradiation, Water Research, 85, 346-358. https://doi.org/10.1016/j.watres.2015.08.050
  • 23. Mohd Zainudin, F., Abu Hasan, H., Sheikh Abdullah, S.R. (2018) An overview of the technology used to remove trihalomethane (THM), trihalomethane precursors, and trihalomethane formation potential (THMFP) from water and wastewater, Journal of Industrial and Engineering Chemistry, 57, 1-14. https://doi.org/10.1016/j.jiec.2017.08.022
  • 24. Nyangaresi, P.O., Qin, Y., Chen, G., Zhang, B., Lu, Y., Shen, L. (2019) Comparison of UV-LED photolytic and UV-LED/TiO2 photocatalytic disinfection for Escherichia coli in water, Catalysis Today, 335, 200-207. https://doi.org/10.1016/j.cattod.2018.11.015
  • 25. Özdemir, K., Toröz, İ. (2010) İçme suyu kaynaklarında klorlama yan ürünlerinin diferansiyel UV spektroskopi yöntemi ile izlenmesi, İTÜ Dergisi Su Kirlenmesi Kontrolü, 20(2), 59-69.
  • 26. Özyonar, F., Karagözoğlu, B., Atmaca, E. (2011) İçme Suyundan Elektrokoagülasyon Prosesi ile Doğal Organik Madde Giderimi, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 27(4), 309-316. https://dergipark.org.tr/tr/pub/erciyesfen/issue/25568/269711
  • 27. Qi, H., Huang, Q., Hung, Y.C. (2018) Efficacy of activated persulfate in inactivating Escherichia coli O157:H7 and Listeria monocytogenes, International Journal of Food Microbiology, 284, 40-47. doi: 10.1016/j.ijfoodmicro.2018.06.021
  • 28. Rodríguez-Chueca, J., Amor, C., Silva, T., Dionysiou, D.D., Puma, G.L., Lucas, M.S., Peres, J.A. (2017b) Treatment of winery wastewater by sulphate radicals: HSO5−/transition metal/UV-A LEDs, Chemical Engineering Journal, 310(2), 473-483. https://doi.org/10.1016/j.cej.2016.04.135
  • 29. Rodríguez-Chueca, J., Silva, T., Fernandes, J.R., Lucas, M.S., Puma, G. L., Peres, J.A., Sampaio, A. (2017a) Inactivation of pathogenic microorganisms in freshwater using HSO5-/ UV-A LED and HSO5-/ Mn+/UV-A LED oxidation processes, Water Research, 123, 113-123. https://doi.org/10.1016/j.watres.2017.06.021
  • 30. Ruales-Lonfat, C., Barona, J.F., Sienkiewicz, A., Vélez, J., Benítez, L.N., Pulgarín, C. (2016) Bacterial inactivation with iron citrate complex: A new source of dissolved iron in solar photo-Fenton process at near-neutral and alkaline pH, Applied Catalysis B: Environmental, 180, 379-390. https://doi.org/10.1016/j.apcatb.2015.06.030
  • 31. Sun, P., Tyree, C., Huang, C. H. (2016) Inactivation of Escherichia coli, bacteriophage MS2, and Bacillus spores under UV/H2O2 and UV/peroxydisulfate advanced disinfection conditions, Environmental Science & Technology, 50(8), 4448-4458. doi: 10.1021/acs.est.5b06097
  • 32. Sutherland, J. C., Griffin, K. P. (1981) Absorption spectrum of DNA for wavelengths greater than 300 nm. Radiation Research, 86(3), 399-410. doi:10.2307/3575456
  • 33. Tomar, A. (2009) Toprak ve Su Kirliliği ve Su Havzalarının Korunması, TMMOB İzmir Kent Sempozyumu. 8-10 Ocak, İzmir, 333-345.
  • 34. Verma, K., Gupta, D., Gupta, A.B. (2016) Optimization of ozone disinfection and its effect on trihalomethanes, Journal of Environmental Chemical Engineering, 4(3), 3021-3032. https://doi.org/10.1016/j.jece.2016.06.017
  • 35. Waller, K., Swan, S.H., De Lorenzo, G., Hopkins, B. (1998). Trihalomethanes in drinking water and spontotion abortion, Epidemiology, 9(2), 134-140. PMID: 9504280.
  • 36. Wang, D., Cheng, L., Wang, M., Zhang, X., Xue, D., Zhuo, W., Zheng, L., Ding, A. (2018) The performance of a sulfate-radical mediated advanced oxidation process in the degradation of organic matter from secondary effluents. Environmental Science, Water Research & Technology, 4(6), 773-782. http://dx.doi.org/10.1039/C7EW00346C
  • 37. Wei, G., Liang, X., He, Z., Liao, Y., Xie, Z., Liu, P., Ji, S., He, H., Li, D., Zhang, J. (2015) Heterogeneous activation of Oxone by substituted magnetites Fe3-xMxO4 (Cr, Mn, Co, Ni) for degradation of Acid Orange II at neutral pH, Journal of Molecular Catalysis A: Chemical, 398, 86-94. https://doi.org/10.1016/j.molcata.2014.11.024
  • 38. Wen, G., Xu, X., Zhu, H., Huang, T., Ma, J. (2017) Inactivation of four genera of dominant fungal spores in groundwater using UV and UV/PMS: Efficiency and mechanisms, Chemical Engineering Journal, 328, 619–628. https://doi.org/10.1016/j.cej.2017.07.055
  • 39. Wordofa, D. N., Walker, S. L., Liu, H. (2017) Sulfate radical-induced disinfection of pathogenic Escherichia coli O157: H7 via iron-activated persulfate, Environmental Science & Technology Letters, 4(4), 154-160. DOI: 10.1021/acs.estlett.7b00035
  • 40. Wordofa, D.N. (2014). Application of Iron Activated Persulfate for Disinfection in Water Treatment. Master Thesis. University of California, Riverside, Chemical and Environmental Engineering, USA.
  • 41. Xiao, R., Luo, Z., Wei, Z., Luo, S., Spinney, R., Yang, W., Dionysiou, D.D. (2018) Activation of peroxymonosulfate/persulfate by nanomaterials for sulfate radical-based advanced oxidation technologies, Current Opinion in Chemical Engineering, 19, 51-58. https://doi.org/10.1016/j.coche.2017.12.005
  • 42. Xu, X.R., Li,S., Hao, Q., Liu, J.L., Yu,Y.Y., Li, H.B. (2012) Activation of Persulfate and Its Environmental Application, International Journal of Environment and Bioenergy, 1(1), 60-81.
  • 43. Yasar, A., Nasır, A., Khan, A.A.A. (2006) Energy requirement of ultraviolet and AOPs for the post-treatment of treated combined industrial effluent, Coloration Technology, 122(4), 201-206. https://doi.org/10.1111/j.1478-4408.2006.00028.x
  • 44. Yuan, S., Liao, P., Alshawabkeh, A.N. (2014). Electrolytic manipulation of persulfate reactivity by iron electrodes for trichloroethylene degradation in groundwater. Environmental Science & Technology, 48 (1), 656-663. https://doi.org/10.1021/es404535q
  • 45. Zhang, F., Wang, Y., Chu, ., Gao, B., Yue, Q., Yang, Z., Li, Q. (2013) Reduction of organic matter and trihalomethane formation potential in reclaimed water from treated municipal wastewater by coagulation and adsorption, Chemical Engineering Journal, 223, 696-703. https://doi.org/10.1016/j.cej.2013.03.059