Parçacık Sürü Optimizasyon (PSO) Algoritması Kullanılarak Doğrusal Olmayan İletim Hatlarında Soliton Dalga Üretimi

Bu makalede, doğrusal olmayan iletim hatları kullanılarak, soliton dalgasının analizi, tasarım modellemesi, ve üretimi gerçekleştirilmiştir. Matematiksel analiz işlemlerinin gerçekleştirilmesi sonucu devre parametreleri ve değerleri belirlenmiştir. Parametreleri ve değerlerini belirlemek için parçacık sürü optimizasyonu (PSO) algoritması kullanılmıştır. Optimizasyon sonucunda elde edilen parametreler kullanılarak doğrusal olmayan iletim hattı tasarlanmıştır. Belirlenen parametreler üzerinden tasarlanan devre, LTspice programı ile simüle edilmiştir. Daha sonra, oluşturulan devre tasarımının deneyleri gerçekleştirilmiştir. Doğrusal olmayan iletim hattı devresinin; simulasyon verileri ile deneysel gerçekleme verileri karşılaştırılmıştır. Simulasyon verileri ve deneysel gerçekleme verilerinin uyumlu olduğu görülmüştür.

SOLITON WAVE GENERATION ON NONLINEAR TRANSMISSION LINES USING A PARTICLE SWARM OPTIMIZATION (PSO) ALGORITHM

In this article, analysis, designing, and generation of soliton waves are performed using nonlinear transmission lines (NLTLs). As a result of performing mathematical analysis processes, circuit parameters and values are determined. A particle swarm optimization (PSO) algorithm is used to determine the parameters and their values. The parameters obtained from the optimization are used to design a nonlinear transmission line. The circuit designed over the determined parameters is simulated with the LTspice program. Then, experiments of the created circuit design are carried out. The simulation data and the experimental implementation data are compared for the nonlinear transmission line circuit. Simulation and experiment results are found to be compatible.

___

  • 1. Aksoy, A., and Yenikaya, S. (2021). Doğrusal olmayan iletim hatlarındaki RF soliton dalga tasarımı. X. URSI-Turkish Scientific Congress National General Council Meeting, Gebze Technical University, Kocaeli, Turkey, Sep. 7-9, 2021 (in Turkish).
  • 2. Azad, A. W., Khan, F., Caruso, A. (2020, March). Self-sustaining High-power RF Signal Generation Using LDMOS Based Power Amplifier and Nonlinear Transmission Line. In 2020 IEEE Applied Power Electronics Conference and Exposition (APEC) (pp. 3567-3572). doi: 10.1109/APEC39645.2020.9124616.
  • 3. Aziz, F., Asif, A., & Bint-e-Munir, F. (2020). Analytical modeling of electrical solitons in a nonlinear transmission line using Schamel–Korteweg deVries equation. Chaos, Solitons & Fractals, 134, 109737. doi: https://doi.org/10.1016/j.chaos.2020.109737
  • 4. Brown, M. P. and Smith, P. W. (1997, June). High power, pulsed soliton generation at radio and microwave frequencies. In Digest of Technical Papers. 11th IEEE International Pulsed Power Conference (Cat. No. 97CH36127) (Vol. 1, pp. 346-354). IEEE. doi: 10.1109/PPC.1997.679354.
  • 5. Darling, J. D. and Smith, P. W. (2008). High-power pulsed RF extraction from nonlinear lumped element transmission lines. IEEE Transactions On Plasma Science, 36(5), 2598-2603. doi: 10.1109/TPS.2008.2004371.
  • 6. Elizondo-Decanini, J. M., Coleman, D., Moorman, M., Petney, S., Dudley, E., Youngman, K. and Myers, K. (2015). Soliton production with nonlinear homogeneous lines. IEEE Transactions On Plasma Science, 43(12), 4136-4142. doi: 10.1109/TPS.2015.2497233.
  • 7. Hasegawa, A., Tappert, F. (1973). Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous Dispersion. Applied Physics Letters, 23(3), 142-144. doi: https://doi.org/10.1063/1.1654836.
  • 8. Ikezi, H., Wojtowicz, S. S., Waltz, R. E., DeGrassie, J. S. and Baker, D. R. (1988). High‐power soliton generation at microwave frequencies. Journal of Applied Physics, 64(6), 3277-3281. doi: https://doi.org/10.1063/1.341517.
  • 9. Neto, L. P. S., Moraes, H. M., Rossi, J. O., Barroso, J. J., Rangel, E. G. L. (2020). Increasing the voltage modulation depth of the RF produced by NLTL. IEEE Transactions on Plasma Science, 48(10), 3367-3372. doi: 10.1109/TPS.2020.3000216.
  • 10. Neto, L. P. S., Rossi, J. O., Barroso, J. J. and Schamiloglu, E. (2018). Hybrid nonlinear transmission lines used for RF soliton generation. IEEE Transactions on Plasma Science, 46(10), 3648-3652. doi: 10.1109/TPS.2018.2864214.
  • 11. Neto, L. P. S., Rossi, J. O., Barroso, J. J., Schamiloglu, E. (2016). High-power RF generation from nonlinear transmission lines with barium titanate ceramic capacitors. IEEE Transactions on Plasma Science, 44(12), 3424-3431. doi: 10.1109/TPS.2016.2628324.
  • 12. Nikoo, M. S., Hashemi, S. M. A., Farzaneh, F. (2018). Theoretical analysis of RF pulse termination in nonlinear transmission lines. IEEE Transactions on Microwave Theory and Techniques, 66(7), 3234-3244. doi: 10.1109/TMTT.2018.2865952.
  • 13. Nikoo, M. S., Hashemi, S. M. A. (2017). Analysis of the power transfer to a nonlinear transmission line. IEEE Transactions on Microwave Theory and Techniques, 65(11), 4073-4083. doi: 10.1109/TMTT.2017.2701366.
  • 14. Nikoo, M. S., Hashemi, S. M. A., Farzaneh, F. (2017). Theory of terminated nonlinear transmission lines. IEEE Transactions on Microwave theory and Techniques, 66(1), 91-99. doi: 10.1109/TMTT.2017.2731958.
  • 15. Raimundi, L. R., Rossi, J. O., Rangel, E. G. L., Silva, L. C., Schamiloglu, E. (2018). High-voltage capacitive nonlinear transmission lines for RF generation based on silicon carbide Schottky diodes. IEEE Transactions on Plasma Science, 47(1), 566-573. doi: 10.1109/TPS.2018.2873491.
  • 16. Rangel, E. G. L., Barroso, J. J., Rossi, J. O., Yamasaki, F. S., Neto, L. P. S., Schamiloglu, E. (2016). Influence of input pulse shape on RF generation in nonlinear transmission lines. IEEE Transactions on Plasma Science, 44(10), 2258-2267. doi: 10.1109/TPS.2016.2593606.
  • 17. Ricketts, D. S., Li, X., Sun, N., Woo, K., Ham, D. (2007). On the self-generation of electrical soliton pulses. IEEE Journal of Solid-State Circuits, 42(8), 1657-1668. doi: 10.1109/JSSC.2007.900291.
  • 18. Ricketts, D. S., Li, X., Ham, D. (2006). Electrical soliton oscillator. IEEE Transactions on Microwave Theory and Techniques, 54(1), 373-382. doi: 10.1109/TMTT.2005.861652.
  • 19. Rossi, J. O., & Rizzo, P. N. (2009, June). Study of hybrid nonlinear transmission lines for high power RF generation. In 2009 IEEE Pulsed Power Conference (pp. 46-50). doi: 10.1109/PPC.2009.5386200.
  • 20. Russell, J. S. (1845). Report on Waves: Made to the meetings of the british association in 1842-43.
  • 21. Xie, F., Wang, C., Xia, L., Yuan, B., Mao, J. (2018, September). A Method of Inductor Selection for nltls Circuits Applied in High Repetition Pulse Generator. In 2018 11th UK-Europe-China Workshop on Millimeter Waves and Terahertz Technologies (UCMMT) (Vol. 1, pp. 1-3). IEEE. doi: 10.1109/UCMMT45316.2018.9015785.
  • 22. Yildirim, O. O., & Ham, D. (2014). High-dimensional chaos from self-sustained collisions of solitons. Applied Physics Letters, 104(24), 244109. doi: https://doi.org/10.1063/1.4884943.
  • 23. Yildirim, O. O., Ricketts, D. S. and Ham, D. (2009). Reflection soliton oscillator. IEEE Transactions on Microwave Theory And Techniques, 57(10), 2344-2353. doi: 10.1109/TMTT.2009.2029025.
Uludağ Üniversitesi Mühendislik Fakültesi Dergisi-Cover
  • ISSN: 2148-4147
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2002
  • Yayıncı: BURSA ULUDAĞ ÜNİVERSİTESİ > MÜHENDİSLİK FAKÜLTESİ