Dyonların Varlığında Statik Alanlardan Dinamik Alanlara Geçiş

Bu çalışmada dyonların var olduğunu farz ettik. Dyon, elektrik ve manyetik yüklerin bulunduğu parçacık olduğundan basit olarak elektrik ve karşı düşen manyetik yükün aynı düşük hıza sahip olduğunu kabul ettik. Böylece bu önermeyi kullanarak ve elektrik yükler ile manyetik yükler arasındaki etkileşimi ihmal ederek dyonların varlığında simetrik mikroskobik Maxwell denklemlerini ortaya çıkarttık. Sonuçta ortalama alma yöntemini kullanarak teoriyi genişlettik ve boşlukta makroskobik Maxwell denklemlerini elde ettik. 

TRANSITION FROM STATIC TO DYNAMIC FIELDS IN THE PRESENCE OF DYONS

We assumed the existence of dyons. Since the dyon is a particle with electric and magnetic charges, we simply considered that electric charge and corresponding magnetic charge have the same small velocity. Thus using this proposition and neglecting the interaction between electric and magnetic charges, we constructed symmetric microscopic Maxwell equations in the presence of dyons. Eventually we expanded the theory and obtained macroscopic Maxwell equations in vacuum using averaging process. 

___

  • 1. De Groot S.R. and Suttorp, L.G. (1965) Covariant derivation of the Maxwell equations: Multipole expansion of the polarization tensor to all orders, Physica, 31, 1713-1727.
  • 2. De Groot, S.R. and Vlieger, J. (1965) Derivation of Maxwell's equations: The atomic field equations, Physica, 31, 125-140.
  • 3. De Groot, S.R. (1969) The Maxwell Equations, Amsterdam: North-Holland.
  • 4. Dirac, P. A. M. (1931) Quantised singularities in the electromagnetic field, Proceedings of the Royal Society of London, A133, 60-72.
  • 5. Dirac, P. A. M. (1948) The theory of magnetic monopoles, Physical Review, 74, 817-830.
  • 6. Jansen, L. (1958) Molecular theory of the dielectric constant, Physical Review, 112, 434-444.
  • 7. Lorentz, H.A. (1902) The fundamental equations for electromagnetic phenomena in ponderable bodies, deduced from the theory of electrons, Proceedings of the Royal Academy Amsterdam, 5.
  • 8. Lorentz, H.A. (1909) The Theory of Electrons, Leipzig.
  • 9. Mazur, P. and Nijboer, B.R.A. (1953) On the statistical mechanics of matter in an electromagnetic field. I: Derivation of the Maxwell equations from electron theory, Physica, 19, 971-986.
  • 10. Poincaré, H. (1896) Remarques sur une expérience de M. Birkeland, Comptes Rendus, 123, 530-533.
  • 11. Rosenfeld, L. (1951) Theory of Electrons, Amsterdam: North-Holland Publishing Company.
  • 12. Schram, K. (1960) Quantum statistical derivation of the macroscopic Maxwell equations, Physica, 26, 1080-1090.
  • 13. Schwinger, J. (1966) Magnetic charge and quantum field theory, Physical Review, 144, 1087-1093.
  • 14. Schwinger, J. (1968) Sources and magnetic charge, Physical Review, 173, 1536-1544.
  • 15. Schwinger, J. (1969) A magnetic model of matter, Science, 165, 757-761.
  • 16. Schwinger, J. (1975) Magnetic charge and the charge quantization condition, Physical Review D, 12, 3105-3111.
  • 17. Schwinger, J., DeRaad, L.L., Milton K.A. and Tsai, W.–Y. (1998) Classical Electrodynamics, Perseus Books.
  • 18. Shnir, Y.M. (2005) Magnetic Monopoles, Springer-Verlag, Berlin.
  • 19. Thomson, J.J. (1904) Electricity and Matter, Scribners, New York.
  • 20. Van Vleck, J.H. (1932) The Theory of Electric and Magnetic Susceptibilities, Oxford.
  • 21. Voisin, J. (1959) Interprétation des polarisations d'ordres supérieurs, Physica, 25, 195-204.
  • 22. Wu, T.T. and Yang C.N. (1975) Concept of nonintegrable phase factors and global formulation of gauge fields, Physical Review D, 12, 3845-3857.
  • 23. Zor, Ö. (2013) Maxwell equations in symmetric form, International Conference on Electromagnetics in Advanced Applications.
  • 24. Zor, Ö. (2016) The new field quantities and the Poynting theorem in material medium with magnetic monopoles, Journal of Electrical Engineering-Elektrotechnicky Casopis, 67, 444-448.
  • 25. Zwanziger, D. (1971) Local-Lagrangian quantum field theory of electric and magnetic charges, Physical Review D, 3, 880-891.