Sinkrotron Işınımı: Depolama Halkasından Sert X-ışını Demet Hattına

Bu çalışmada, elektronların bir elektron kaynağından salınması ile başlayıp sinkrotron ışınımı elde edilmesine kadarki birbirini izleyen adımları kapsayan genel bir bakış sunulmuştur. Üçüncü nesil ışınım kaynaklarının ana karakteristikleri ve temel bileşenleri ile farklı eklenti aygıtlarının ışınım karakteristikleri de tartışılmıştır. Tipik bir sert X-ışını sinkrotron demet hattının kısaca tasvirinden sonra, rezonans olmayan inelastik sert X-ışını tekniği olan, sinkrotron ışınımına dayalı X-ışını Raman saçılma spektroskopisi açıklanmıştır. Son olarak, DESY-PETRA III sinkrotronundaki X-ışını Raman spektrometresi kullanılarak, 10 keV enerjide 0.8 eV çözünürlükle kaydedilen sıvı fazdaki suyun oksijen K-soğurma sınırı spektrumu sunulmuş ve literatürde geleneksel X-ışını soğurma spektroskobisi ile ölçülen spektrum ile karşılaştırılmıştır. 

SYNCHROTRON RADIATION: FROM STORAGE RING TO A HARD X-RAY BEAMLINE

In the present study, a general overview covering the consecutive steps, starting with the release of electrons from an electron source until the generation of synchrotron radiation, is presented. A brief introduction regarding the main characteristics and fundamental components of third generation light sources as well as the radiation characteristics of different Insertion Devices are discussed. Following a concise description of a typical hard X-ray synchrotron beamline, synchrotron radiation based X-ray Raman scattering spectroscopy, which is a non-resonant inelastic hard X-ray technique, is explained. Finally, liquid water oxygen K-edge absorption spectrum recorded with a resolution of 0.8 eV at 10 keV utilizing X-ray Raman spectrometer at PETRA III facility of DESY is presented and compared to the spectrum from the literature measured by conventional X-ray absorption spectroscopy.

___

  • Ascone, I. et al. (2004) PETRA III: A Low Emittance Synchrotron Radiation Source, Technical Design Report, EDMS ID: D00000000822371,A,1,1
  • Balerna, A. and Mobilio, S. (2015) Introduction to synchrotron radiation, Springer-Verlag Berlin Heidelberg. doi: 10.1007/978-3-642-55315-8_1
  • Basile, F. et al. (2010) Combined Use of Synchrotron‐Radiation‐Based Imaging Techniques for the Characterization of Structured Catalysts, Advanced Functional Materials, 20, 4117–4126. doi: 10.1002/ADFM.201001004
  • Bergmann, U. et al. (2002a) Bulk-sensitive XAS characterization of light elements: From X-ray Raman scattering to X-ray Raman spectroscopy, Microchemical Journal, 71, 221–230. doi: 10.1016/S0026-265X(02)00014-0
  • Bergmann, U. et al. (2002b) X-ray Raman spectroscopy at the oxygen K edge of water and ice: Implications on local structure models, Physical Review B, 66, 092107. doi: 10.1103/PhysRevB.66.092107
  • Braun, A. et al. (2015) Hard X-rays in–soft X-rays out: An operando piggyback view deep into a charging lithium ion battery with X-ray Raman spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 200, 257-263. doi: 10.1016/j.elspec.2015.03.005
  • Brown, G.E. and Sturchio, N.C. (2002) An Overview of Synchrotron Radiation Applications to Low Temperature Geochemistry and Environmental Science, Reviews in Mineralogy and Geochemistry, 49 (1) , 1-115. doi: 10.2138/gsrmg.49.1.1
  • Cai Y. Q. et al. (2005) Ordering of hydrogen bonds in high-pressure low-temperature H2O, Physical Reiew Letters, 94, 025502. doi: 10.1103/PhysRevLett.94.025502
  • Cotte, M. et al. (2010) Synchrotron-Based X-ray Absorption Spectroscopy for Art Conservation: Looking Back and Looking Forward, Accounts of Chemical Research, 43 (6),705–714. doi: 10.1021/ar900199m
  • Fukui, H. et al. (2007) Oxygen K-edge fine structures of water by x-ray Raman scattering spectroscopy under pressure conditions, Journal of Chemical Physics, 127, 134502. doi: 10.1063/1.2774988
  • Gomez, A. et al. (2018) The high-energy x-ray diffraction and scattering beamline at the Canadian Light Source, Review of Scientific Instruments, 89, 063301. doi: 10.1063/1.5017613
  • Gueriau, P. et al. (2017) Noninvasive Synchrotron-Based X-ray Raman Scattering Discriminates Carbonaceous Compounds in Ancient and Historical Materials. Analytical Chemistry, 89 (20), 10819-10826. doi: 10.1021/acs.analchem.7b02202
  • Hämäläinen, K. and Manninen, S. (2001) Resonant and non-resonant inelastic x-ray scattering, Journal of Physics-Condensed Matter, 13 (34), 7539–7555. doi: 10.1088/0953-8984/13/34/306
  • Huotari, S. et al. (2010) Direct tomography with chemical-bond contrast, Nature Materials, 10 (7), 489–493. doi: 10.1038/nmat3031
  • Iwamoto, H. (2018) Synchrotron Radiation X-ray Diffraction Techniques Applied to Insect Flight Muscle, International Journal of Molecular Sciences, 19 (6), 1748. doi: 10.3390/ijms19061748
  • Iitaka T. et al. (2015) Pressure-induced dissociation of water molecules in ice VII, Scientific Reports, 5, 12551. doi: 10.1038/srep12551
  • Jonas A. et al. (2014) Comparison of x-ray absorption spectra between water and ice: New ice data with low pre-edge absorption cross-section, Journal of Chemical Physics, 141, 034507. doi: 10.1063/1.4890035
  • Lee, S. K. et al. (2014) Probing of pressure-induced bonding transitions in crystalline and amorphous earth materials: insights from X-ray Raman scattering at high pressure, Reviews in Mineralogy and Geochemistry, 78 (1), 139-174. doi: 10.2138/rmg.2014.78.4
  • Lindegaard-Andersen, A. and Gerward, L. (1995) Röntgen centenary-100 years of X-rays, Radiation Physics and Chemistry, 46 (3), 299–302. doi: 10.1016/0969-806X(95)00063-4
  • Lutzenkirchen-Hecht, D. et al. (2014) The multi-purpose hard X-ay beamline BL10 at the DELTA storage ring, Journal of Synchrotron Radiation, 21, 819-826. doi: 10.1107/S1600577514006705
  • Mao W. L. et al. (2006) X-ray-induced dissociation of H2O and formation of an H2O2 alloy at high pressure, Science, 314, 636–638. doi: 10.1126/science.1132884
  • McCarthy, A. A. et al. (2018) ID30B–a versatile beamline for macromolecular crystallography experiments at the ESRF, Journal of Synchrotron Radiation, 25, 1249–1260 doi: 10.1107/S1600577518007166
  • Moffat, K. and Ren, Z. (1997) Synchrotron radiation applications to macromolecular crystallography, Current Opinion in Structural Biology, 7 (5), 689-696. doi: 10.1016/S0959-440X(97)80079-6
  • Myneni, S. et al. (2002) Spectroscopic probing of local hydrogen-bonding structures in liquid water, Journal of Physics Condensed Matter, 14 (8), L213. doi: 10.1088/0953-8984/14/8/106
  • Näslund, L. Å. et al. (2005) X-ray absorption spectroscopy measurements of liquid water, Journal of Physical Chemistry B, 109 (28), 13835-13839. doi: 10.1021/jp052046q
  • Nilsson, A. et al. (2010) X-ray absorption spectroscopy and x-ray Raman scattering of water and ice: an experimental view, Journal of Electron Spectroscopy and Related Phenomena, 177 (2-3), 99–129. doi: 10.1016/j.elspec.2010.02.005
  • Parent, P. et al. (2002) Structure of the water ice surface studied by x-ray absorption spectroscopy at the O K-edge, Journal of Chemical Physics, 117, 10842–10851. doi: 10.1063/1.1519256
  • Richard, F. et al. (2001) TESLA Technical Design Report Part I Executive Summary, ISBN: 3-935702-00-0, ISSN: 0418-9833
  • Sahle C. J. et al. (2013) Microscopic structure of water at elevated pressures and temperatures, Proceedings of the National Academy of Sciences, 110, 6301–6306. doi: 10.1073/pnas.1220301110
  • Sahle, C. J. et al. (2015) Planning, performing and analyzing X-ray Raman scattering experiments, Journal of Synchrotron Radiation, 22, 400-409. doi: 10.1107/S1600577514027581
  • Sahle, C. J. et al. (2016). In situ characterization of the decomposition behavior of Mg (BH4)2 by X-ray Raman scattering spectroscopy. Physical Chemistry Chemical Physics, 18 (7), 5397-5403. doi: 10.1039/C5CP06571B
  • Smith, J. D. et al. (2006) Probing the local structure of liquid water by x-ray absorption spectroscopy, Journal of Physical Chemistry B, 110 (40), 20038–20045. doi: 10.1021/jp063661c
  • Tse, J. S. et al. (2008) X-ray Raman spectroscopic study of water in the condensed phases, Physical Reiew Letters, 100, 095502. doi: 10.1103/PhysRevLett.100.095502
  • Yano, J. and Yachandra, V. K. (2009) X-ray absorption spectroscopy, Photosynthesis Research, 102, 241–254. doi: 10.1007/s11120-009-9473-8
Uludağ Üniversitesi Mühendislik Fakültesi Dergisi-Cover
  • ISSN: 2148-4147
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2002
  • Yayıncı: BURSA ULUDAĞ ÜNİVERSİTESİ > MÜHENDİSLİK FAKÜLTESİ
Sayıdaki Diğer Makaleler

Bir Aktivite Periyodu Sonrası Farklı Giysilerin Termofizyolojik Konfor Özellikleri

Esra TAŞTAN ÖZKAN, BİNNAZ KAPLANGİRAY, UFUK ŞEKİR

NUMERICAL ANALYSIS OF THE ALVEOLAR SPACES AND HUMAN TISSUES FOR NANOSCALE BODY-CENTRIC WIRELESS NETWORKS

MUSTAFA ALPER AKKAŞ

FOTOVOLTAİK SİSTEMLERİN PROJELENDİRME, KURULUM VE İŞLETİLMESİNDE ÖNEMLİ FAKTÖRLER

Abdulvahap YİĞİT, NURULLAH ARSLANOĞLU, Buket Seçil EKER

ARAÇLARDA KULLANILAN EMNİYET KEMERLERİNİN KAZA ANINDA İNSAN SAĞLIĞINA OLAN OLUMSUZ ETKİLERİNİN AZALTILMASI İÇİN BİR SİSTEM GELİŞTİRİLMESİ

Reşat Oğuzhan SÜMER, Betül GÜLÇİMEN ÇAKAN, Mustafa Cemal ÇAKIR, Agah UĞUZ

YALIN VE LİFLİ POLİMER SARGILI BETONARME KİRİŞLERDE EĞİLME DAVRANIŞININ SONLU ELEMAN MODELLEMESİ

Kanat Burak BOZDOĞAN, Hasan Orhun KÖKSAL, Selen AKTAN

KİMYASAL ARITMA PROSESLERİNİN KARASUYUN BOYUTSAL DAĞILIMI ÜZERİNDEKİ ETKİLERİNİN İNCELENMESİ

B. Hande GÜRSOY HAKSEVENLER, Serdar DOĞRUEL, İdil ARSLAN ALATON

SAĞLIK SEKTÖRÜNDE HİZMET KALİTESİNİN ÇOK ÖLÇÜTLÜ KARAR VERME YÖNTEMLERİ İLE DEĞERLENDİRİLMESİ: ANKARA’DA BİR UYGULAMA

Leman İnci ÇANAKÇI YÜKSEL, Murat ARIKAN

18 MV-Harici Demet ile RadFET Radyasyon Sensörü Performansının Değerlendirilmesi

Berk MORKOÇ, AYŞEGÜL KAHRAMAN, Di̇nçer YEĞEN, Ercan YILMAZ

ÇANAKKALE BOĞAZI AKINTI TÜRBİN MODELLENMESİ

Muzaffer YÜCEL, İsmail TARHAN

DOLGU DUVARIN YAPISAL DÜZENSİZLİKLERE VE PERFORMANSA ETKİSİNİN MEVCUT BİR YAPI ÜZERİNDE İNCELENMESİ

Osman Fatih BAYRAK, Murat BİKÇE