KİMYASAL ARITMA PROSESLERİNİN KARASUYUN BOYUTSAL DAĞILIMI ÜZERİNDEKİ ETKİLERİNİN İNCELENMESİ

Bu deneysel çalışmada bir zeytinyağı karasuyu örneği (KOİ: 155000 mg/L; TOK: 40000; Toplam fenol (T-Fenol): 4100 mg/L) kimyasal arıtma yöntemlerinden çöktürme, koagülasyon, elektrokoagülasyon ve Fenton prosesi ile arıtmaya tabi tutulduktan sonra içeriğinde meydana gelen değişim, dane boyut dağılımı (DBD) analizi uygulanarak incelenmiştir. Bu kapsamda ham ve arıtılmış karasu örnekleri filtrasyon/ultrafiltrasyon temelli fiziksel ayırma prosedürü kullanılarak 1600, 450, 220, 13, 8, 5, 3, 2 ve 1 nm gözenek boyutlu filtrelerden geçirilmiştir. DBD analizlerinden elde edilen sonuçlara göre ham karasu örneğinde KOİ, TOK, BOİ5 ve renk (absorbans) parametrelerini oluşturan bileşenlerin daha çok partiküler boyut aralığında (>1600 nm; toplam KOİ’nin %54’ü, TOK’un %43’ü, BOİ5’in %43’ü ve rengin %57’si), T-Fenol parametresini oluşturan bileşenlerin ise kolloidal boyut aralığında (2 nm-1600 nm; %54) dağıldığı gözlenmiştir. Çalışılan arıtma proseslerinden en yüksek giderim, faz transferi ile giderim mekanizmasına dayanan koagülasyon ve çöktürme proseslerinden elde edilmiş (%55-60 KOİ, %45-48 TOK ve %32 T-Fenol), öte yandan Fenton prosesinin karasuyun organik madde giderimi için yeterli olmadığı tespit edilmiştir. Arıtma prosesleri sonrasında gerçekleşen giderimlerin KOİ-TOK parametreleri için büyük oranda partiküler boyut aralığında, T-Fenol için partiküler ve kolloidal aralıklarda dağıldığı bulunmuştur. 

Investigation of Chemical Treatment Processes Effect on the Size Distribution of Olive Oil Mill Wastewater

In this experimental study, an olive oil mill wastewater (OOMW, COD:155000 mg/L; TOC:40000; Total phenol(TPh): 4100 mg/L) was subjected to different chemical treatment processes such as precipitation, coagulation, electrocoagulation and Fenton’s reagent. After the treatment processes, the change in the organic content of OOMW was investigated by applying particle size distribution (PSD) analysis. In this concept, sequential filtration/ultrafiltration procedure was followed by employing different molecular weight cut-off membranes including 1600, 450, 220, 13, 8, 5, 3, 2 and 1 nm for raw and treated OOMW samples. Accordingly, the PSD results for raw OOMW, the components of COD, TOC, BOD5 and color (absorbance) parameters were mostly in the particle fractions (>1600 nm; 54% of COD, 43% of TOC, 43% of BOD5 and 57% of color), while TPh parameter was distributed in the colloidal fractions (2 nm-1600 nm;54%). Among the treatment processes, the highest removals were obtained from coagulation and precipitation processes (55-60% COD, 45-48% TOC and 32% TPh) that based on the phase transfer removal mechanism. Otherwise, the obtained reductions by Fenton’s reagent was poor. The major removals were observed in particulate fractions for COD-TOC where the main TPh removal was observed both in particulate and colloidal fractions after treatment processes.

___

  • APHA/AWWA/WPCP (2005). Standard Methods for the Examination of Water and Wastewater, 21st edn, ed by Clesceri, L.S., Greenberg, A.E., Eaton, A.D. American Public Health Association, Washington, DC.
  • Amor, C., Marchão, L., Lucas, M. S., Peres, J. A. (2019). Application of advanced oxidation processes for the treatment of recalcitrant agro-industrial wastewater: A review. Water, 11(2), 205. doi.org/10.3390/w11020205
  • Azaizeh, H., Halahlih, F., Najami, N.,Brunner, D., Faulstich,M., Tafesh, A. (2012). Antioxidant activity of phenolic fractions in olive mill wastewater, Food Chemistry, 134, 2226–2234. doi: 10.1016/j.foodchem.2012.04.035
  • Azbar, N., Bayram, A., Filibeli, A., Muezzinoglu, A., Sengul, F., Ozer, A. (2004). A review of waste management options in olive oil production. Critical Reviews in Environmental Science and Technology, 34(3), 209-247. doi:10.1080/10643380490279932
  • Azbar, N., Keskin, T. ve Çatalkaya, E.C. (2008). Improvement in anaerobic degradation of olive mill effluent (OME) by chemical pretreatment using batch systems, Biochemical Engineering Journal, 38, 379-383. doi: 10.1016/j.bej.2007.08.005
  • Berthe, C., Redon, E. ve Feuillade, G. (2008). Fractionation of the Organic Matter Contained in Leachate Resulting from two Modes of Landfilling: An Indicator of Waste Degradation. Journal of Hazardous Materials, 154, 262–271. doi: 10.1016/j.jhazmat.2007.10.022
  • Box, J.D. (1983). Investigation of the Folin-Ciocalteau phenol reagent for the determination of polyphenolic substances in natural waters, Water Research, 17, 511-525. doi: 10.1016/0043-1354(84)90135-0
  • Doğruel, S., Ölmez-Hancı, T., Kartal, Z., Arslan-Alaton, I., Orhon, D. (2009). Effect of Fenton’s oxidation on the particle size distribution of organic carbon in OMW, Water Research, 43, 3874-3983. doi: 10.1016/j.watres.2009.06.017
  • Dülekgürgen, E., Doğruel, S., Orhon, D. (2007). Effect of chemical and biological treatment on COD fingerprints of textile wastewaters, Water Science and Technology, 55, 277-287. doi.org/10.2166/wst.2007.332
  • Domingues, E., Gomes, J., Quina, M., Quinta-Ferreira, R., Martins, R. (2018). Detoxification of Olive Mill Wastewaters by Fenton’s Process. Catalysts, 8(12), 662. doi: 10.3390/catal8120662
  • El-Abbassi, A., Kiai, H., Hafidi, A.(2012). Phenolic profile and antioxidant activities of olive mill wastewater, Food Chemistry, 132, 406–412. doi: 10.1016/j.foodchem.2011.11.013
  • El-Gohary, F.A., Badawy, M.I., El-Khateeb, M.A., El-Kalliny, A.S., (2009). Integrated treatment of omw by the combination of Fenton’s reaction and anaerobic treatment, Journal of Hazardous Materials, 162, 1536-1541. doi: 10.1016/j.jhazmat.2008.06.098
  • Emamjomeh, M.M., Sivakumar, M. (2009), Review of pollutants removed by electrocoagulation and electrocoagulation/flotation processes, Journal of Environmental Management, 90, 1663-1679. doi: 10.1016/j.jenvman.2008.12.011
  • Garcia-Castello, E., Cassano, A., Criscuoli,A., Conidi,C. ve Drioli, E. (2010). Recovery and Concentration of Polyphenols from Olive Mill Wastewaters by Integrated Membrane System, Water Research, 44, 3883 – 3892. doi: 10.1016/j.watres.2010.05.005
  • Goncalves, M. R., Costa, J.C., Marques, I. P., Alves, M. M. (2012). Strategies for lipids and phenolics degradation in the anaerobic treatment of olive mill wastewater, Water Research, 46,1684-1692. doi: 10.1016/j.watres.2011.12.046
  • Gürsoy-Haksevenler, B. H., Arslan-Alaton, İ. (2012). Karasuyun koagülasyon, elektrokoagülasyon ve Fenton prosesleri ile kimyasal arıtılabilirliği, itüdergisi/e su kirlenmesi kontrolü, 22, 11-21.
  • Hanafi, F., Assobhei, O. ve Mountadar, M. (2010). Detoxification and Discoloration of Moroccan OMWW by Electrocoagulation, Journal of Hazardous Materials, 174, 807-812. doi: 10.1016/j.jhazmat.2009.09.124
  • Iamarino, G., Rao, M.A., Gianfreda, L. (2009). Dephenolization and detoxification of OMW by purified biotic and abiotic oxidative catalysts, Chemosphere, 74, 216–223. doi: 10.1016/j.chemosphere.2008.09.061
  • ISO 6060 (1986). Determination of the Chemical Oxygen Demand. International Standards Organization, 1st edn, Geneva, Switzerland.
  • ISO 11348-3 (1998). Water Quality-Determination of the Inhibitory Effect of Water Samples on the Light Emission of Vibrio fischeri (luminescent bacteria test)-Part 3: Method Using Freeze-Dried Bacteria, ISO, Geneva.
  • Karahan, Ö., Doğruel, S., Dülekgürgen, E., Orhon, D. (2008). COD fractionation of tannery wastewaters - particle size distribution, biodegradability and modeling, Water Research, 42, 1083-1092.doi:10.1016/j.watres.2007.10.001
  • Kiril-Mert, B. ve Kestioğlu, K. (2008). The Research of membrane technology treatability in different industrial wastewaters, Journal of New World Sciences Academy, 3, 1-19.
  • Kiril-Mert, B., Yonar, T., Kılıç, M. ve Kestioğlu, K. (2010). Pre-treatment studies on olive oil mill effluent using physicochemical, Fenton and Fenton-like oxidations processes, Journal of Hazardous Materials, 174, 122–128. doi:10.1016/j.jhazmat.2009.09.025
  • Lee, Z. S., Chin, S. Y., Lim, J. W., Witoon, T., Cheng, C. K. (2019). Treatment technologies of palm oil mill effluent (POME) and olive mill wastewater (OMW): A brief review. Environmental technology & innovation, 100377. doi:10.1016/j.eti.2019.100377
  • Nieto, L.M. Hodaifa, G., Rodríguez, S., Giménez, J.A., Ochando, J.(2011). Degradation of organic matter in OMW through homogeneous Fenton-like reaction, Chemical Engineering Journal, 173, 503-510. doi:10.1016/j.cej.2011.08.022
  • Ölmez-Hancı, T., Dülekgürgen, E., Arslan-Alaton, İ., Orhon, D. (2008). Effect of chemical treatment on the aromatic carbon content and particle size distribution-based organic matter profile of OMW, Fresenius Environmental Bulletin, 17, 1790-1795.
  • Rharrabti, Y., Yamani, M. E. (2018). Olive Mill Wastewater: Treatment and Valorization Technologies. In Handbook of Environmental Materials Management (pp. 1-28). Springer, Cham.
  • Sanchis, M.I.A., Saez, J., Llorens, M., Soler, A., Ortuno, J.F. (2003). Particle size distribution in slaughterhouse wastewater before and after coagulation-flocculation, Environmental Progress, 22, 183-188. doi:10.1002/ep.670220316
  • Sarika, R., Kalogerakis, N., Mantzavinos, D. (2005). Treatment of OME: Part II. Complete removal of solids by direct flocculation with poly-electrolytes, Recent Advances in Bioremediation, 31, 297-304. doi:10.1016/j.envint.2004.10.006
  • Su Kirliliği Kontrolü Yönetmeliği (2004). 24.05.2011 tarih ve 25687 sayılı Resmi Gazete, Orman ve Su İşleri Bakanlığı, Ankara.
  • TÜBİTAK MAM (2015). Zeytin Sektörü Atıklarının Yönetimi Projesi, Çevre ve Şehircilik Bakanlığı. https://webdosya.csb.gov.tr/db/zeytinay/webmenu/webmenu15702.pdf
  • Wang, F., Smith D.W., El-Din, M.G. (2006). Aged raw landfill leachate: Membrane fractionation, O3 only and O3/H2O2 oxidation, and molecular size distribution analysis, Water Research, 40, 463-474. doi: 10.1016/j.watres.2005.11.038
  • Yahiaoui, O., Lounici, H., Abdi, N., Drouiche, N., Ghaffour, N., Pauss, A., Mameri, N. (2011). Treatment of OMWW by the combination of ultrafiltration and bipolar electrochemical reactors, Chemical Engineering and Processing, 50, 37-41. doi: 10.1016/j.cep.2010.11.003
  • Yassine, W., Akazdam, S., Zyade, S., Gourich, B. (2018). Treatement of Olive Mill Wastewater Using Electrocoagulation Process. Journal of Applied Surfaces and Interfaces, 4(1-3).
  • Zhang, Z., Zhao, J., Xia, S., Liu, C., Kang, X. (2007). Particle size distribution and removal by a chemical-biological flocculation process, Journal of Environmental Science, 19, 559-563. doi: 10.1016/S1001-0742(07)60093-X
  • Zorpas, A. A. ve Costa, C. N. (2010). Combination of Fenton oxidation and composting for the treatment of the olive solid residue and the olive mile wastewater from the olive oil industry in Cyprus, Bioresource Technology, 101, 7984-7987. doi: 10.1016/j.biortech.2010.05.030
Uludağ Üniversitesi Mühendislik Fakültesi Dergisi-Cover
  • ISSN: 2148-4147
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2002
  • Yayıncı: BURSA ULUDAĞ ÜNİVERSİTESİ > MÜHENDİSLİK FAKÜLTESİ