ŞASİ DİNAMOMETRELİ KLİMATİK ODA TEST SİMÜLATÖRÜNDE ARAÇ MODELİ OLUŞTURMA VE DOĞRULAMA SÜRECİ

Askeri ve ticari araçlar seri üretimden önce Ar-Ge aşamasında birçok teste tabi tutulurlar. Testler esnasında aracın performansına bakılarak gereken yerler geliştirilir. Test sonuçlarının doğru şekilde yorumlanabilmesi için birçok parametrenin ölçülmesi ve gerçek hayatın benzetimi gerekmektedir. Test koşullarını sağlayabilmek için geliştirilmiş özel simülatörler bulunmaktadır Bu sistemler gerçek hayat koşullarını (sıcaklık, nem, yük, kuvvet vs.) oluşturarak testler için uygun ortam sağlamaktadır. Simülatör kullanımı test sürecini hızlandırır ve önemli miktarda zaman tasarufu sağlar. Klimatik oda ile entegre edilmiş şasi dinamometresi tasarım doğrulama süreçlerini hızlandırmaktadır. Klimatik oda içerisinde farklı çevresel koşullar sağlanabilmekte ve bu sayede dış hava koşullarından bağımsız olarak testler yapılabilmektedir. Şasi dinamometresi ise aracın güç paketi ve şasi bileşenlerinin yola çıkmadan test edilmesini sağlamaktadır. Bu makalede klimatik oda ve şasi dinamometresi simülatörlerinin birbirlerine entegre edilmesiyle inşa edilmiş olan bir test laboratuarı ele alınmıştır. Klimatik oda ve şasi dinamometresinin genel çalışma prensibi açıklandıktan sonra ilgili simülatörlerin özellikleri üzerinde durulmuştur. Daha sonra araca yolda etki eden dirençlerin dinamometrede benzetimi için gerekli olan parametreler yavaşlama testi (coast-down) ile elde edilmiştir. Son olarak yolda ve simülatörde aynı test yapılmış ve test sonuçları karşılaştırılmıştır.

Climatic Chamber with Chassis Dynamometer Testing Simulator Car Model Development and Validation Process

Military and commercial vehicles are subjected to many tests, in the R & D stage before serial production. During this test process, critical parts have  to be improved according to the evaluation of vehicle's performance. Measurement of several parameters and  simulation of real life conditions are essential for correct interpretation of the test results. There are specially developed simulators to provide the required test conditions. These systems are simulating real life conditions (temperature, humidity, load, force, etc.) and provide a suitable environment for test process. Simulators accelerate the testing process and saving  considerable amount of time. Climatic chamber with integrated chassis dynamometer is used to  accelerate the process of design verification. Climatic chamber  can  provide  different environmental conditions and by this way test processes can be performed independent from the ambient conditions.Moreover  the chassis dynamometer provides testing the vehicle’s power pack and chassis components ınstead of testing the vehicle in road conditions . In this article, a testing laboratory, which was built by integrating the climatic chamber and chassis dynamometer, has been focused on. Firstly the operating principles of the climatic chamber and the chassis dynamometer has been explained  and then the simulators’ characteristics are indicated. Secondly the main parameters for  the simulation of the resistance acting on the vehicle  during road tests have been  calculated with the coast-down test on the dynamometer. Finally the same test was performed both on the road and on the simulator  for comparing the test results.

___

  • Anthony, A., Alexander, M. (2007). Engine testing: theory and practice, Butterworth-Heinemann, 442.
  • AVL (2005). EMCON 402 Vehicle Simulation, AVL, AT2039E, Rev. 00, 15.
  • AVL. (2009). Overview and Operation Manuel, AVL, AT3125E, Rev. 00, 150.
  • Aybers, N. (1991). Soğutma Makineleri, Bayrak Yayıncılık, İstanbul.
  • Batmaz, İ. (1998). Bilgisayar ve veri toplama sisteminin taşıt performans ölçümlerinde kullanılması, Gazi Üniv. Müh. Mim. Fak. Der., Cilt 13, No 2, 171-179.
  • Çelik, M. B., Balcı, M. (2002). Sabit yük ve hız şartlarında sıkıştırma oranının motor karakteristiklerine etkisi, Teknoloji Dergisi, 5, (3-4), 39-45.
  • Çelik, M. B., Bayır, R., Özdalyan, B. (2007). Bilgisayar Destekli Motor Test Standının Tasarımı ve İmalatı, Teknoloji Dergisi, Cilt 10, Sayı 2, 131-141.
  • Çengel, A.Y., Boles, A.M. (1994). Thermodynamics: An Engineering Approach, McGraw-Hill, 987.
  • Dossat, R.J. (1997). Principles of Refrigeration, Prentice – Hall Inc., 512, 1997.
  • French, M., Stark, A. (2000). Chassis Dynamometers, Experimental Techniques, 45-46.
  • Göktan, A.G.,Güney, A., Ereke, M. (1995). Taşıt Frenleri, Ders Notları, İTÜ Makina Fakültesi, 4-30.
  • Kılıçaslan, E. (2002). Soğutma Sistemlerinin Performans Analizi, Marmara Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, 132.
  • MIL-SDT-810-G. (2012). Environmental Engineering Considerations and Laboratory Tests, Military Standard, 103.
  • Norrby, P. (2012). Prediction of Coast-down Test Results / A Statistical Study of Environmental Influences, Master of Science Thesis, Chalmers University of Technology, 3-5.
  • Ortatepe, K. (1997). Mevcut Soğutma Gruplarının Yeni Soğutucu Akışkanlara Adaptasyonu, Marmara Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 180.
  • Özkan, D.B. (2014). İklimlendirme Sistem Elemanları, Ders Notları, Yıldız Teknik Üniversitesi, 7-8.
  • Özkol, N. (1999). Uygulamalı Soğutma Tekniği, Makine Mühendisleri Odası, Yayın No:115, 709.
  • Pelkmans, L., Debal, D. (2006). Comparison of on-road emissions with emissions measured on chassis dynamometer test cycles, Transportation Research Part D:Transport and Environment, Volume 11, Issue 4, 233-241, doi: 10.1016/j.trd.2006.04.001
  • Preda, I., Covaciu, D., Ciolan, G. (2010). Coast Down Test Theoretical And Experimental Approach, CONAT 2010 - International Automotive Congress, At Brasov, Romania, 152-165.
  • Ribbens, W. B.,Mansour, N. P. (2003). Understanding automotive electronics, Newnes, 470.
  • SAE J2452. (1999). Stepwise Coastdown Methodology for Measuring Tire Rolling Resistance ,Society of Automotive Engineers, 2-10.
  • Weiss Technik GmbH. (2009). Climatic Drive in Chamber with Combustion Air Supply in Coordination with Powertrain Testbed, Weiss, Project WK 653/45/60/RO, 11-14.
  • Won, J. S., Langari, R. (2002). Fuzzy torque distribution control for a parallel hybrid vehicle, Expert Systems, Volume 19 Issue 1, 4-10, doi: 10.1111/1468-0394.00184
  • Yamankaradeniz, R., Horuz, İ., Coşkun, S. (2002). Soğutma Tekniği ve Uygulamalar, VİPAŞ A.Ş., 608.
Uludağ Üniversitesi Mühendislik Fakültesi Dergisi-Cover
  • ISSN: 2148-4147
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2002
  • Yayıncı: BURSA ULUDAĞ ÜNİVERSİTESİ > MÜHENDİSLİK FAKÜLTESİ