NİKEL NANOTELLER İÇİN MÜHENDİSLİK PARAMETRELERİ ÖLÇEKLENDİRME KURALI

Bu çalışmanın ana konusunu, son yıllarda fiziksel özellikleriyle araştırmacıların ilgi odağında olan nikel nanoteller oluşturmaktadır. Tek kristalli nikel nanotellerin mekanik özellikleri moleküler dinamik simülasyonları vasıtasıyla incelenmiş ve literatürdeki deneysel çalışmalardan da faydalanılarak mühendislik parametreleri (elastisite modülü, akma gerilmesi ve maksimum gerilme) için ölçeklendirme kuralı geliştirilmiştir. Ayrıca nikel naotellerin deformasyon esnasındaki kristal yapısının değişimi ortak komşu analizi ile ortaya konmuştur. Bu çalışmanın en önemli hedefi; nikel nanoteller özelinde çok ölçekli modelleme için literatüre ölçeklendirme kuralı kazandırmaktır.

Scaling law of engineering parameters for nickel nanowires

The nickel nanowires which have been the focus of researchers' attention for their physical properties in recent years are the main subject of this study. The mechanical properties of the single crystal nickel nanowires have been investigated with the help of molecular dynamics simulations and scaling law has been developed for engineering parameters (elasticity modulus, yield stress and maximum stress) by using earlier published experimental studies. In addition, the evolution of crystal structure during the deformation of nickel nanowires was examined by common neighbor analysis. The most important goal of this study is to develop a scaling law for multi-scale modeling of the nickel nanowires.

___

  • Abdullaeva, Z. (2017) Nanomaterials in daily life: Compounds, synthesis, processing and commercialization, Springer International Publishing, A.B.D.
  • Daw M.S., Baskes M.I. (1984) Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals, Phys. Rev. B., 29, 6443–53. doi:10.1103/PhysRevB.29.6443
  • Diao J., Gall K., Dunn M.L. (2004) Atomistic simulation of the structure and elastic properties of gold nanowires, J. Mech. Phys. Solids, 52, 1935–62. doi:10.1016/j.jmps.2004.03.009
  • Dupont V., Sansoz F. (2009) Molecular dynamics study of crystal plasticity during nanoindentation in Ni nanowires, J. Mater. Res., 24, 948–56. doi:10.1557/jmr.2009.0103
  • Ertürk A. S., Yıldız Y. O. ve Kırca M. (2019) Mechanical Performance ve Morphological Evolution of Heat-Treated Nanoporous Gold: A Molecular Dynamics Study, Physica E: Low-dimensional Systems and Nanostructures, 108, 15-21. doi:10.1016/j.physe.2018.11.028
  • Foiles S.M., Baskes M.I., Daw M.S. (1986) Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys, Phys. Rev. B., 33, 7983–91. doi:10.1103/PhysRevB.33.7983
  • Kulshrestha K., Thakur B., Verma Y.P., Jindal P. (2017) Development of Small Pressure Sensing Unit using Nano-Materials, Mater. Today Proc., vol. 4, p. 10422–6. doi:10.1016/j.matpr.2017.06.392
  • Molleman B., Hiemstra T. (2018) Size and shape dependency of the surface energy of metallic nanoparticles: Unifying the atomic and thermodynamic approaches, Phys. Chem. Chem. Phys., 20, 20575–87. doi:10.1039/c8cp02346h
  • Park H.S., Gall K., Zimmerman J.A. (2006) Deformation of FCC nanowires by twinning and slip, J. Mech. Phys. Solids, 54, 1862–81. doi:10.1016/j.jmps.2006.03.006
  • Peng C., Zhong Y., Lu Y., Narayanan S., Zhu T., Lou J. (2013) Strain rate dependent mechanical properties in single crystal nickel nanowires, Appl. Phys. Lett., 102, 083102. doi:10.1063/1.4793481
  • Peng C., Ganesan Y., Lu Y., Lou J. (2012) Size dependent mechanical properties of single crystalline nickel nanowires, J. Appl. Phys., 111, 063524. doi:10.1063/1.3698625
  • Pinheiro P.C., Sousa C.T., Araújo J.P., Guiomar A.J., Trindade T. (2013) Functionalization of nickel nanowires with a fluorophore aiming at new probes for multimodal bioanalysis, J. Colloid Interface Sci., 410, 21–6. doi:10.1016/j.jcis.2013.07.065
  • Plimpton S. (1995) Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comput. Phys., 117, 1–19. doi:10.1006/jcph.1995.1039
  • Su D., Kim H.S., Kim W.S., Wang G. (2012) Mesoporous nickel oxide nanowires: Hydrothermal synthesis, characterisation and applications for lithium-ion batteries and supercapacitors with superior performance, Chem - A Eur. J., 18, 8224–9. doi:10.1002/chem.201200086
  • Thompson A.P., Plimpton S.J., Mattson W. (2009) General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions, J. Chem. Phys., 131, 154107. doi:10.1063/1.3245303
  • Wang W.D., Yi C.L., Fan K.Q. (2013) Molecular dynamics study on temperature and strain rate dependences of mechanical tensile properties of ultrathin nickel nanowires, Trans. Nonferrous Met. Soc. China (English Ed), 23, 3353–61. doi:10.1016/S1003-6326(13)62875-7
  • Wang S., Chen K., Wang M., Li H., Chen G., Liu J., et al. (2018) Controllable synthesis of nickel nanowires and its application in high sensitivity, stretchable strain sensor for body motion sensing, J. Mater. Chem. C., 6, 4737–45. doi:10.1039/C7TC05970A
  • Wu H.A. (2006) Molecular dynamics study on mechanics of metal nanowire, Mech. Res. Commun., 33, 9–16. doi:10.1016/j.euromechsol.2005.11.008
  • Yıldız Y. O. ve Kırca M. (2017) Effects of Ultrathin Coating on the Tensile Behavior of Nanoporous Gold, Journal of Applied Physics, 122, 084305. doi:10.1063/1.5000368