Karıştırma Koşullarının Polimer Modifiye Bitümün Özellikleri Üzerindeki Etkileri: Genel Bir Bakış

Bitümün farklı polimerler ile modifikasyonu, polimerin tipi, bitüm bileşenleri ve karışım koşulları gibi faktörlere bağlı olarak, reolojik ve kimyasal karakterizasyon farklılıklarına neden olur. Anahtar parametreler olarak da adlandırılabilen karışım koşulları; karıştırma sıcaklığı, karıştırma süresi, kesme oranı (karıştırma hızı) gibi alt başlıklarla incelenebilir. Polimer Modifiye Bitüm (PMB) karışım koşulları, ya da diğer bir deyişle anahtar parametreler, malzemenin yaşlanma özellikleri, polimerin degredasyonu ya da polimerin bitüm tarafından emilimi gibi PMB karakterizasyonu üzerinde önemli etkilere sahiptir ve bu sebeple araştırmacılar için her zaman ilgi çekici bir konu olmuştur. Bu çalışma, literatürde şimdiye kadar gerçekleştirilmiş ve PMB’nin üretiminde karışım koşullarının etkisini ortaya koyan yayınların derlemesini sunarak anahtar parametrelerin önemini ortaya koymayı amaçlamaktadır.

THE INFLUENCES OF ALTERING THE MIXING CONDITIONS ON THE PROPERTIES OF POLYMER MODIFIED BITUMEN: AN OVERVIEW

Modification of bitumen by different modifiers, causes the morphological, rheological and chemical characterisation differences related to the following three main factors: the type of the polymer, bitumen components and blending conditions. Manufacturing conditions can be investigated in several groups such as; mixing temperature, duration of mixing and shear rate (mixing speed). These manufacturing conditions are the key parameters, since they act an important role on the properties of the final product. These key parameters and their effects have always been an interesting topic for the researchers, because they may have some consequences like aging of the sample, degradation of the polymer or sometimes less absorption of the polymer by bitumen etc. This study aims to present the influences of mixing conditions on different properties of the bituminous mixtures with the help of reviewing the previous studies in the literature.

___

  • 1. Al-Rub, R. K. A., Darabi, M. K., Little, D. N. and Masad, E. A. (2010). A micro-damage healing model that improves prediction of fatigue life in asphalt mixes. International Journal of Engineering Science, 48(11), 966-990. doi:10.1016/j.ijengsci.2010.09.016
  • 2. Alsoliman, H. A. 2010 Engineering characteristics of local polymer modified asphalt mixtures, Doctoral Thesis, King Saud University, Riyad.
  • 3. Babalghaith, A. M., Koting, S., Sulong, N. H. R. and Karim, M. R. (2019). Optimization of mixing time for polymer modified asphalt. In IOP Conference Series: Materials Science and Engineering, 512(1), 1-8. doi:10.1088/1757-899x/512/1/012030
  • 4. Bagshaw, S. A., Kemmitt, T., Waterland, M. and Brooke, S. (2019). Effect of blending conditions on nano-clay bitumen nanocomposite properties. Road Materials and Pavement Design, 20(8), 1735-1756. doi: 10.1080/14680629.2018.1468802
  • 5. Bearsley, S., Forbes, A. and G. Haverkamp, R. (2004). Direct observation of the asphaltene structure in paving‐grade bitumen using confocal laser‐scanning microscopy. Journal of Microscopy, 215(2), 149-155. doi:10.1111/j.0022-2720.2004.01373.x
  • 6. Berthomieu, C. and Hienerwadel, R. (2009). Fourier transform infrared (FTIR) spectroscopy. Photosynthesis research, 101(2-3), 157-170. doi:10.1007/s11120-009-9439-x
  • 7. Brûlé, B., Brion, Y. and Tanguy, A. (1988). Paving asphalt polymer blends: Relationships between composition, structure and properties, Proc Assoc Asphalt Paving Technologists, 57, 41-64.
  • 8. Collins, J., Bouldin, M., Gelles, R. and Berker, A. (1991). Improved performance of paving asphalts by polymer modification. Journal of the Association of Asphalt Paving Technologists, 60, 43-79.
  • 9. Dehouche, N., Kaci, M. and Mouillet, V. (2016). The effects of mixing rate on morphology and physical properties of bitumen/organo-modified montmorillonite nanocomposites. Construction and Building Materials, 114, 76-86. doi: 10.1016/j.conbuildmat.2016.03.151
  • 10. Doğan, M. and Bayramli, E. (2009). Effect of polymer additives and process temperature on the physical properties of bitumen‐based composites. Journal of Applied Polymer Science, 113(4), 2331-2338. doi: 10.1002/app.30280
  • 11. Fang, C., Liu, P., Yu, R. and Liu, X. (2014). Preparation process to affect stability in waste polyethylene-modified bitumen. Construction and Building Materials, 54, 320-325. doi: 10.1016/j.conbuildmat.2013.12.071
  • 12. Forbes, A., Haverkamp, R. G., Robertson, T., Bryant, J. and Bearsley, S. (2001). Studies of the microstructure of polymer‐modified bitumen emulsions using confocal laser scanning microscopy. Journal of Microscopy, 204(3), 252-257.
  • 13. García‐Morales, M., Partal, P., Navarro, F. J., Martínez‐Boza, F. J. and Gallegos, C. (2007). Processing, rheology, and storage stability of recycled EVA/LDPE modified bitumen. Polymer Engineering & Science, 47(2), 181-191. doi: 10.1002/pen.20697
  • 14. Gingras, J., Tanguy, P., Mariotti, S. and Chaverot, P. (2005). Effect of process parameters on bitumen emulsions. Chemical Engineering and Processing: Process Intensification, 44(9), 979-986. doi:10.1016/j.cep.2005.01.003
  • 15. Haddadi, S., Ghorbel, E. and Laradi, N. (2008). Effects of the manufacturing process on the performances of the bituminous binders modified with EVA. Construction and Building Materials, 22(6), 1212-1219. doi:10.1016/j.conbuildmat.2007.01.028
  • 16. Handle, F., Füssl, J., Neudl, S., Grossegger, D., Eberhardsteiner, L., Hofko, B., et al. (2014). Understanding the microstructure of bitumen: a CLSM and fluorescence approach to model bitumen ageing behavior. The 12th ISAP International Conference on Asphalt Pavements, Raleigh.
  • 17. Handle, F., Grothe, H. and Neudl, S. (2012). Confocal laser scanning microscopy—observation of the microstructure of bitumen and asphalt concrete. 5th Eurasphalt & Eurobitume Congress, Istanbul. Retrieved March 30, 2020, from https://publik.tuwien.ac.at/files/PubDat_211706.
  • 18. Hatakeyama, T. and Quinn, F. (1999). Thermal analysis. Wiley, New York.
  • 19. Hou, Y., Wang, L., Wang, D., Guo, M., Liu, P. and Yu, J. (2017). Characterization of bitumen micro-mechanical behaviors using AFM, phase dynamics theory and MD simulation. Materials, 10(208), 1-16. doi:10.3390/ma10020208
  • 20. Kaya, D., Topal, A. and McNally, T. (2019a). Relationship between processing parameters and aging with the rheological behaviour of SBS modified bitumen. Construction and Building Materials, 221, 345-350. doi:10.1016/j.conbuildmat.2019.06.081
  • 21. Kaya, D., Topal, A. and McNally, T. (2019b). Correlation of processing parameters and ageing with the phase morphology of styrene-butadiene-styrene block co-polymer modified bitumen. Materials Research Express, 6(10), 1-24. doi:10.1088/2053-1591/ab349c
  • 22. Kaya, D., Topal, A. Sengoz B. and Aghazadeh, P. (2018). Short Term and Long Term Aging Performance Effects of Mixing Conditions on the Rheological Characteristics of Styrene-Butadiene-Styrene Modified Bitumen. The 13th ISAP International Congress on Advances in Civil Engineering, Izmir, Turkey.
  • 23. Kaya, D., Topal, A., Gupta, J. and McNally, T. (2020). Aging effects on the composition and thermal properties of styrene-butadiene-styrene (SBS) modified bitumen. Construction and Building Materials, 235, 117450. doi:10.1016/j.conbuildmat.2019.117450
  • 24. Kök, B. V., Yılmaz, M., Kuloğlu, N. and Alataş, T. (2011). Investigation of the Rheological Properties of SBS Modified Binder Produced by Different Methods. Sigma, 29, 272-288.
  • 25. Lambert, J. B. (2005). The 2004 Edelstein award address, The deep history of chemistry. Bulletin for the History of Chemistry, 30, 1-9.
  • 26. Larsen, D. O., Alessandrini, J. L., Bosch, A. and Cortizo, M. S. (2009). Micro-structural and rheological characteristics of SBS-asphalt blends during their manufacturing. Construction and Building Materials, 23(8), 2769-2774. doi:10.1016/j.conbuildmat.2009.03.008
  • 27. Lee, Y., France, L. M. and Hawley, M. C. (1997). The effect of network formation on the rheological properties of SBR modified asphalt binders. Rubber Chemistry and Technology, 70(2), 256-263. doi:10.5254/1.3538430
  • 28. Liu, Y., Zhang, J., Chen, R., Cai, J., Xi, Z. and Xie, H. (2017). Ethylene vinyl acetate copolymer modified epoxy asphalt binders: phase separation evolution and mechanical properties. Construction and Building Materials, 137, 55-65. doi:10.1016/j.conbuildmat.2017.01.081
  • 29. Loeber, L., Sutton, O., Morel, J., Valleton, J. M. and Muller, G. (1996). New direct observations of asphalts and asphalt binders by scanning electron microscopy and atomic force microscopy. Journal of Microscopy, 182(1), 32-39. doi:10.1046/j.1365-2818.1996.134416.x
  • 30. Mahboob Kanafi, M., Kuosmanen, A., Pellinen, T. K. and Tuononen, A. J. (2015). Macro-and micro-texture evolution of road pavements and correlation with friction. International Journal of Pavement Engineering, 16(2), 168-179. doi:10.1080/10298436.2014.937715
  • 31. Martín-Alfonso, M., Partal, P., Navarro, F., García-Morales, M., Bordado, J. and Diogo, A. (2009). Effect of processing temperature on the bitumen/MDI-PEG reactivity. Fuel Processing Technology, 90(4), 525-530. doi:10.1016/j.fuproc.2009.01.007
  • 32. Mohan, S. A., Woldekidan, M. F. and Qiu, J. (2013). Effects of mixing procedures on the properties of polymer modified bitumen. In Proceedings of the International Conferences on the Bearing Capacity of Roads, Railways and Airfields, 687-698.
  • 33. Navarro, F., Partal, P., Martínez‐Boza, F. and Gallegos, C. (2007). Influence of processing conditions on the rheological behavior of crumb tire rubber‐modified bitumen. Journal of Applied Polymer Science, 104(3), 1683-1691. doi:10.1002/app.25800
  • 34. Newman, J. K. (1998). Dynamic shear rheological properties of polymer-modified asphalt binders. Journal of Elastomers & Plastics, 30(3), 245-263. doi:10.1177/009524439803000305
  • 35. Ortega, F., Navarro, F., García-Morales, M. and McNally, T. (2015). Thermo-mechanical behaviour and structure of novel bitumen/nanoclay/MDI composites. Composites Part B: Engineering, 76, 192-200. doi:10.1016/j.compositesb.2015.02.030
  • 36. Reading, M., Luget, A. and Wilson, R. (1994). Modulated differential scanning calorimetry. Thermochimica Acta, 238, 295-307. doi:10.1016/s0040-6031(94)85215-4
  • 37. Rozeveld, S. J., Shin, E. E., Bhurke, A., France, L. and Drzal, L. T. (1997). Network morphology of straight and polymer modified asphalt cements. Microscopy Research and Technique, 38(5), 529-543. doi:10.1002/(sici)1097-0029(19970901)38:5<529::aid-jemt11>3.0.co;2-o
  • 38. Sam, Z., Lin, L. and Ashok, K. (2009). Materials Characterization Techniques. Taylor & Francis Group Cap, 7, 177-205.
  • 39. Shaffie, E., Arshad, A. K., Alisibramulisi, A., Ahmad, J., Hashim, W., Abd Rahman, Z. and Jaya, R. P. (2018). Effect of mixing variables on physical properties of modified bitumen using natural rubber latex. International Journal of Civil Engineering and Technology, 9, 1812-1821.
  • 40. Shafii, M. A., Veng, C. L. Y., Rais, N. M. and Ab Latif, A. (2017). Effect of blending temperature and blending time on physical properties of NRL-modified bitumen. International Journal of Applied Engineering Research, 12(13), 3844-3849.
  • 41. Shenoy, A. (2001). Determination of the temperature for mixing aggregates with polymer-modified asphalts. International Journal of Pavement Engineering, 2(1), 33-47. doi:10.1080/10298430108901715
  • 42. Skoog, D. and Leary, J. (1996). Instrumentelle Analytik. Springer Verlag, Berlin.
  • 43. Soenen, H., Besamusca, J., Fischer, H. R., Poulikakos, L. D., Planche, J., Das, P. K., et al. (2014). Laboratory investigation of bitumen based on round robin DSC and AFM tests. Materials and Structures, 47(7), 1205-1220. doi:10.1617/s11527-013-0123-4
  • 44. Takamura, K. and Heckmann, W. (1999). Polymer network formation in the emulsion residue recovered by forced air drying. The 2nd International Symposium on Asphalt Emulsion Technology. Retrieved March 30, 2020 from https://s3.amazonaws.com/academia.edu.documents.
  • 45. Wang, M. and Liu, L. (2017). Investigation of microscale aging behavior of asphalt binders using atomic force microscopy. Construction and Building Materials, 135, 411-419. doi:10.1016/j.conbuildmat.2016.12.180
  • 46. Wegan, V., (2001) "Effect of Design Parameters on Polymer Modified Bituminous Mixtures," Danish Road Institute
  • 47. Yoon, S., Bhatt, S., Lee, W., Lee, H. Y., Jeong, S. Y., Baeg, J., et al. (2009). Separation and characterization of bitumen from Athabasca oil sand. Korean Journal of Chemical Engineering, 26(1), 64-71. doi:10.1007/s11814-009-0011-3
  • 48. Yu, J.-Y., Feng, Z.-G., and Zhang, H.-L. (2011). Ageing of polymer modified bitumen (PMB). In Polymer modified bitumen (pp. 264-297). Woodhead Publishing, Cambridge.
  • 49. Zhang, H., Yu, J., Wang, H. and Xue, L. (2011). Investigation of microstructures and ultraviolet aging properties of organo-montmorillonite/SBS modified bitumen. Materials Chemistry and Physics, 129(3), 769-776. doi:10.1016/j.matchemphys.2011.04.078
Uludağ Üniversitesi Mühendislik Fakültesi Dergisi-Cover
  • ISSN: 2148-4147
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2002
  • Yayıncı: BURSA ULUDAĞ ÜNİVERSİTESİ > MÜHENDİSLİK FAKÜLTESİ