KARBONDİOKSİT TUTUCU OLARAK KULLANILAN KARBON NANOTÜPLER İÇİN EN UYGUN MODİFİKASYON TÜRÜNÜN BELİRLENMESİ

İklim değişikliğinin en önemli sebeplerinden birisi olan karbondioksit (CO2) emisyonlarının birincil kaynağı, enerji üretiminde kullanılan fosil yakıtlardır. Yanma sonrası oluşan CO2 emisyonlarını azaltmak için, adsorpsiyon prosesinin ve bu proseste özellikle karbon bazlı adsorbanların kullanımının oldukça etkili olduğu kanıtlanmıştır. Bunlardan birisi olan karbon nanotüplerin, adsorpsiyon kapasitesini artırmak için farklı modifikasyonları kullanılmaktadır. Ancak, en uygun modifikasyon türüne karar verirken sadece adsorpsiyon kapasitesi yeterli olmamakta, pek çok teknik kriterin yanında maliyetler de gündeme gelmektedir. Bu nedenle bu çalışmada, çok duvarlı karbon nanotüplerin polietilenimin (PEI), tetraetilenpentamin (TEPA), 3-aminopropiltrieoksilan (APTS) ve pürin takviyeli PEI olmak üzere dört farklı modifikasyonu ele alınmış ve en uygun modifikasyon türünü belirlemek için de çok kriterli karar verme (MCDM) teknikleri kullanılmıştır. Ele alınan kriterler (ön işlem maliyeti, modifikasyon malzemesi maliyeti, enerji ihtiyacı, adsorpsiyon kapasitesi, toplam döngü, adsorpsiyon kapasitesinin düşmesi, desorpsiyon sıcaklığı ve desorpsiyon süresi) SMART (Simple Multi-Attribute Rating Technique) ve CRITIC (Criteria Importance Through Intercritera Correlation) yöntemleri ile ağırlıklandırılmıştır. Modifikasyon alternatifleri, her iki yöntemden elde edilen ağırlıklandırma sonuçlarıyla COPRAS (Complex Proportional Assessment) yöntemi kullanılarak karşılaştırılmıştır. Çalışma sonucunda, dört farklı karbon nanotüp modifikasyonu içinden en uygun seçeneğin pürin takviyeli PEI olduğu belirlenmiştir.

Determination Of the Most Appropriate Modification Type for Carbon Nanotubes Used for Carbon Dioxide Capture

The primary source of carbon dioxide (CO2) emissions, one of the most important causes of climate change, is fossil fuels used in energy production. Adsorption and especially the use of carbonbased adsorbents have proven to be very effective in reducing CO2 emissions after combustion. Different modifications of carbon nanotubes used for this purpose are used to increase the adsorption capacity. However, when deciding on the most suitable modification type, the adsorption capacity alone is not sufficient, besides many technical criteria, costs also become an issue. Therefore, in this study, four different modifications of multi-walled carbon nanotubes such as polyethyleneimine (PEI), tetraethylenepentamine (TEPA), 3-aminopropyltrieoxylane (APTS), and purine-enhanced PEI were discussed and multi-criteria decision making (MCDM) techniques were used to determine the most appropriate modification type. Considered criteria (pretreatment cost, modification material cost, energy requirement, adsorption capacity, total cycle, decrease in adsorption capacity, desorption temperature, and desorption time) were weighted with SMART (Simple Multi-Attribute Rating Technique) and CRITIC (Criteria Importance Through Intercriteria Correlation) methods. The modification alternatives were compared with the weighting results obtained from both methods using the COPRAS (Complex Proportional Assessment) method. As a result of the study, it was determined that the most suitable option among four different carbon nanotube modifications was PEI supplemented with purine.

___

  • 1. Ahmed, R., Liu, G., Yousaf, B., Abbas, Q., Ullah, H. ve Ali, M.U. (2020) Recent advances in carbon-based renewable adsorbent for selective carbon dioxide capture and separation-A review, Journal of Cleaner Production, 242, 118409. doi: https://doi.org/10.1016/j.jclepro.2019.118409
  • 2. Babu, D.J., Bruns, M. ve Schneider, J.J.(2017) Unprecedented CO2 uptake in vertically aligned carbon nanotubes, Carbon, 125, 327-335. doi: https://doi.org/10.1016/j.carbon.2017.09.047
  • 3. Bahamon, D. ve Vega, L.F. (2016) Systematic evaluation of materials for post combustion CO2 capture in a Temperature Swing Adsorption process, Chemical Engineering Journal, 284, 438-447. doi: https://doi.org/10.1016/j.cej.2015.08.098
  • 4. Deng, M. ve Park, H.G. (2019) Spacer-assisted amine-coiled carbon nanotubes for CO2 capture, Langmuir, 35(13), 4453-4459. doi: https://doi.org/10.1021/acs.langmuir.8b03980
  • 5. Du, Y., Du, Z., Zou, W., Li, H., Mi, J. ve Zhang, C. (2013) Carbon dioxide adsorbent based on rich amines loaded nano-silica, Journal of Colloid and Interface Science, 409, 123. doi: https://doi.org/10.1016/j.jcis.2013.07.071
  • 6. Hu, X.E., Liu, L., Luo, X., Xiao, G., Shiko, E., Zhang, R., Fan, X., Zhou, Y., Liu. Y., Zeng, Z. ve Li, C. (2020) A review of N-functionalized solid adsorbents for post-combustion CO2 capture, Applied Energy, 260, 114244. doi: https://doi.org/10.1016/j.apenergy.2019.114244
  • 7. Hussin, F. ve Aroua, M.K. (2020) Recent trends in the development of adsorption technologies for carbon dioxide capture: A brief literature and patent reviews (2014–2018), Journal of Cleaner Production, 253, 119707. doi: https://doi.org/10.1016/j.jclepro.2019.119707
  • 8. Irani, M., Jacobson, A.T., Gasem, K.A. ve Fan, M. (2017) Modified carbon nanotubes/tetraethylenepentamine for CO2 capture, Fuel, 206, 10-18. doi: https://doi.org/10.1016/j.fuel.2017.05.087
  • 9. Khraisheh, M., Mukherjee, S., Kumar, A., Al Momani, F., Walker, G. ve Zaworotko, M.J. (2020) An overview on trace CO2 removal by advanced physisorbent materials, Journal of Environmental Management, 255, 109874. doi: https://doi.org/10.1016/j.jenvman.2019.109874
  • 10. Kısa, A.C.G. (2021) TR83 bölgesinde yenilenebilir enerji kaynaklarının CRITIC tabanlı gri ilişkisel analiz yaklaşımı ile değerlendirilmesi, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 27(4), 542-548. doi: 10.5505/pajes.2021.99389
  • 11. Lee, M.S., Lee, S.Y. ve Park, S.J. (2015) Preparation and characterization of multi-walled carbon nanotubes impregnated with polyethyleneimine for carbon dioxide capture, International Journal of Hydrogen Energy, 40(8), 3415-3421. doi: https://doi.org/10.1016/j.ijhydene.2014.12.104
  • 12. Lin, Y., Yan, Q.J., Kong, C.L. ve Chen, L. (2013) Polyethyleneimine Incorporated Metalorganic Frameworks Adsorbent for Highly Selective CO2 Capture, Scientific Reports, 3, 1895. doi: 10.1038/srep01859
  • 13. Modak, A, ve Jana, S. (2019) Advancement in porous adsorbents for post-combustion CO2 capture, Microporous and Mesoporous Materials, 276, 107-132. doi: https://doi.org/10.1016/j.micromeso.2018.09.018
  • 14. Odu, G.O. (2019) Weighting Methods for Multi-Criteria Decision Making Technique, Journal of Applied Science and Environmental Management, 23(8), 1449-1457. doi: 10.4314/jasem.v23i8.7
  • 15. Oschatz, M. ve Antonietti M. (2018) A search for selectivity to enable CO2 capture with porous adsorbents, Energy & Environmental Science, 11(1), 57-70. doi: 10.1039/C7EE02110K
  • 16. Sanz, R., Calleja, G., Arencibia, A. ve Sanz-Pérez, E.S. (2013) Development of High Efficiency Adsorbents for CO2 Capture based on a Double-Functionalization Method of Grafting and Impregnation, Journal of Material Chemistry A, 1, 1956−1962. doi: https://doi.org/10.1039/C2TA01343F
  • 17. Singh, G., Lee, J., Karakoti, A., Bahadur, R., Yi, J., Zhao, D., AlBahiyl, K. ve Vinu, A. (2020) Emerging trends in porous materials for CO2 capture and conversion, Chemical Society Reviews, 49(13), 4360-4404. doi: https://doi.org/10.1039/D0CS00075B
  • 18. Su, F., Lu, C. ve Chen, H.S. (2011) Adsorption, desorption, and thermodynamic studies of CO2 with high-amine-loaded multiwalled carbon nanotubes, Langmuir, 27(13), 8090-8098. doi: https://doi.org/10.1021/la201745y
  • 19. Tian, Z., Huang, J., Zhang, X., Shao, G., He, Q., Cao, S. ve Yuan, S. (2018) Ultramicroporous N-doped carbon from polycondensed framework precursor for CO2 adsorption, Microporous Mesoporous Materials, 257, 19-26. doi: https://doi.org/10.1016/j.micromeso.2017.08.012
  • 20. Ticaret Bakanlığı. “Yeşil Mütabakat Eylem Planı 2021”. https://ticaret.gov.tr/haberler/yesilmutabakat- eylem-plani-yayimlandi (Erişim Tarihi: 01.10.2021).
  • 21. Tome, L.C. ve Marrucho, I.M. (2016) Ionic liquid-based materials: A platform to design engineered CO2 separation membranes, Chemical Society Reviews, 45(10), 2785-2824.
  • 22. Yay, B. ve Gizli, N. (2019) A review on silica aerogels for CO2 capture applications. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 25(7), 907-913. doi: https://doi.org/10.1039/C5CS00510H
  • 23. Zou, L., Sun, Y., Che, S., Yang, X., Wang, X., Bosch, M., Wang, Q., Li, H., Smith, M., Yuan, S., Perry, Z. ve Zhou, H.C. (2017) Porous organic polymers for post‐combustion carbon capture, Advanced Materials, 29(37), 1700229. doi: https://doi.org/10.1002/adma.201700229