ÇOK ÖLÇEKLİ MALZEME MODELLEMESİ İLE KISA ELYAF TAKVİYELİ KOMPOZİTLERİN YAPISAL ANALİZİ: ARAÇ PEDALI ÖRNEĞİ

Lif takviyeli plastik malzemeler ürün hafifletme çalışmalarında kullanılan kompozit malzemelerdendir. Anizotropik yapıda olan bu malzemelerin enjeksiyon prosesinde, akışa bağlı olarak lifler farklı yönlerde dağılabilmektedir. Bu malzemelerden imal edilen ürünlerin sonlu elemanlar modellemelerinde lif yönlerinin proses ortamından transfer edilerek tanımlanması analizin doğruluğunu artırmaktadır. Bu çalışmada, enjeksiyon kalıplama ile üretilen kısa lif takviyeli plastikten elde edilen araç pedalının sonlu elemanlar modeli oluşturularak yapısal analizi, lif oryantasyon verileri de modellemeye dahil edilerek gerçekleştirildi. Lif oryantasyon verileri, enjeksiyon simülasyonu sonucunda elde edildi ve anizotropinin de dahil edildiği çok ölçekli malzeme modelinde kullanıldı. %30 cam lif katkılı poliamid malzeme kullanılarak üretilen pedal sonuçları, takviyesiz plastik malzeme ve çelik malzeme kullanılarak üretilen pedal verileri ile karşılaştırıldı. Çelik pedala kıyasla takviyeli plastik malzemeden elde edilen pedalın yer değiştirme sonuçlarında %2.5 oranında artış, gerilme değerlerinde ise %7 oranında artış görülür. Takviyeli plastiğin 294 MPa olan akma gerilmesi referans alındığında bu artışın kısıt değerlerin altında kaldığı sonucuna varılır. Ayrıca çelik malzemeye kıyasla %20 oranında daha hafif pedal elde edilir.

Structural Analysis of Short Fiber Reinforced Composites By Multi-Scale Material Modeling: A Vehicle Pedal Example

Fiber reinforced plastic materials are composite materials used in product lightening studies. In the injection process of these anisotropic materials, the fibers may disperse in different directions depending on the flow. In the finite element modeling of products manufactured from these materials, the identification of fiber directions by transferring them from the process environment increases the accuracy of the analysis. In this study, a finite element model of the vehicle pedal obtained from short fiber reinforced plastic produced by injection molding and structural analysis was carried out by including fiber orientation data were created. Fiber orientation data were obtained as a result of injection simulation used in the multi-scale material model including anisotropy. Pedal results produced using 30% glass fiber reinforced polyamide material were compared with pedal data produced using non-reinforced plastic material and steel material. Compared to the steel pedal, the displacement results of the pedal made of reinforced plastic material increase by 2.5% and the stress values increase by 7%. When the yield stress of reinforced plastic, which is 294 MPa, is taken as reference, it is concluded that this increase is below the constraint values. In addition, 20% lighter pedal is obtained compared to steel material.

___

  • 1. Advani, S. G., ve Tucker III, C. L. (1987). The use of tensors to describe and predict fiber orientation in short fiber composites, Journal of rheology, 31(8), 751-784. https://doi.org/10.1122/1.549945
  • 2. Affdl, J. H., ve Kardos, J. L. (1976) The Halpin‐Tsai equations: a review, Polymer Engineering & Science, 16(5), 344-352. https://doi.org/10.1002/pen.760160512
  • 3. Altan, M. C., Subbiah, S., Güçeri, S. I., ve Pipes, R. B. (1990) Numerical prediction of three‐dimensional fiber orientation in Hele‐Shaw flows, Polymer Engineering & Science, 30(14), 848-859. https://doi.org/10.1002/pen.760301408
  • 4. Atlıhan, G., Ergene, B. (2018). Vibration analysis of layered composite beam with variable section in terms of delamination and orientation angle in analytical and numerical methods.
  • 5. Arıcasoy, O. (2006) Kompozit sektör raporu, İstanbul Ticaret Odası, 4, 22. https://doi.org/10.12693/APhysPolA.134.13
  • 6. Batchelor, G. K. (1971) The stress generated in a non-dilute suspension of elongated particles by pure straining motion, Journal of Fluid Mechanics, 46(4), 813-829. https://doi.org/10.1017/S0022112071000879
  • 7. Casson, N. (1959) A flow equation for pigment-oil suspensions of the printing ink type, Rheology of disperse systems.
  • 8. Campbell, F. C. (2010) Structural composite materials, ASM international.
  • 9. Chen, C. Y., ve Tucker III, C. L. (1984) Mechanical property predictions for short fiber/brittle matrix composites, Journal of reinforced plastics and composites, 3(2), 120-129. https://doi.org/10.1177/073168448400300202
  • 10. Chung, S. T., ve Kwon, T. H. (1995) Numerical simulation of fiber orientation in injection molding of short‐fiber‐reinforced thermoplastics, Polymer Engineering & Science, 35(7), 604-618. https://doi.org/10.1002/pen.760350707
  • 11. Dinh, S. M., ve Armstrong, R. C. (1984) A rheological equation of state for semiconcentrated fiber suspensions, Journal of Rheology, 28(3), 207-227. https://doi.org/10.1122/1.549748
  • 12. Dhande, K. K., Jamadar, N. I., ve Ghatge, S. (2014). Design and analysis of composite brake pedal: an ergonomic approach. Int J Mech Eng Robot Res, 3(3), 474-482.
  • 13. Folgar, F., ve Tucker III, C. L. (1984) Orientation behavior of fibers in concentrated suspensions, Journal of reinforced plastics and composites, 3(2), 98-119. https://doi.org/10.1177/073168448400300201
  • 14. Ergene, B., Bolat, Ç. (2019). A review on the recent investigation trends in abrasive waterjet cutting and turning of hybrid composites. Sigma Journal of Engineering and Natural Sciences, 37(3), 989-1016.
  • 15. Foss, P. H. (2004) Coupling of flow simulation and structural analysis for glass‐filled thermoplastics, Polymer composites, 25(4), 343-354. https://doi.org/10.1002/pc.20028
  • 16. Fung Y.C. (1977) A first course in continuum mechanics, New York, Prentice-Hall.
  • 17. Fu, S. Y., Hu, X., & Yue, C. Y. (1999) Effects of fiber length and orientation distributions on the mechanical properties of short-fiber-reinforced polymers a review, Journal of the Society of Materials Science, Japan, 48(6Appendix), 74-83. https://doi.org/10.2472/jsms.48.6Appendix_74
  • 18. Givler R.C., Crochet M.J. (1983) On the solution of anisotropic channel flow, Journal Composite Material, 17,330.
  • 19. Guild, F. J. ve Summerscales, J. (1993) Microstructural image analysis applied to fibre composite materials: a review, Composites, 24(5), 383-393. https://doi.org/10.1016/0010-4361(93)90246-5
  • 20. Gustavsson M., Aspenberg D., Stoltz B. (2021) Simulation of short fiber reinforced plastics in LS-DYNA using Envyo mapped fiber orientations obtained from process simulation in Moldex3D ,13th European LS-DYNA Conference,Ulm,Germany.
  • 21. Herschel W.H., Bulkley R. (1927) Flow of non-newtonian fluids, in encyclopedia of fluid mechanics, Gulf, Houston.
  • 22. https://grabcad.com/library/baja-pedal-1, Erişim tarihi: 26.10.2021, Konu: Baja Pedal (Rauber F.).
  • 23. Hsissou, R., Seghiri, R., Benzekri, Z., Hilali, M., Rafik, M., & Elharfi, A. (2021). Polymer composite materials: A comprehensive review. Composite structures, 262, 113640. https://doi.org/10.1016/j.compstruct.2021.113640
  • 24. https://autosafety.org/wp-content/uploads/2015/03/The -Brakes-Will-Not-Always-Overcome-the-Engine.pdf, Erişim tarihi: 24.11.2022, Konu: Brake Effectiveness During Sudden Unintended Acceleration (Belt A.R.).
  • 25. https://whm.net/wp-content/uploads/2021/04/pa66-gf30-black.pdf, Erişim tarihi: 24.11.2022, Konu: Material data sheet PA66 GF30 black (Müller W.H.).
  • 26. Jeffery, G. B. (1922) The motion of ellipsoidal particles immersed in a viscous fluid, Proceedings of the Royal Society of London. Series A, Containing papers of a mathematical and physical character, 102(715), 161-179. https://doi.org/10.1098/rspa.1922.0078
  • 27. Kikuchi, H. ve Koyama, K. (1996) Generalized warpage parameter, Polymer Engineering & Science, 36(10), 1309-1316.
  • 28. Kulkarni, A., Aswini, N., Dandekar, C. R., ve Makhe, S. (2012) Modeling of short fiber reinforced injection moulded composite, In IOP Conference Series: Materials Science and Engineering (Vol. 40, No. 1, p. 012025). IOP Publishing.
  • 29. Kurkin, E. I., ve Sadykova, V. O. (2017) Application of short fiber reinforced composite materials multilevel model for design of ultra-light aerospace structures, Procedia Engineering, 185, 182-189. doi: 10.1016/j.proeng.2017.03.336
  • 30. McGrath, J. J., ve Wille, J. M. (1995) Determination of 3D fiber orientation distribution in thermoplastic injection molding, Composites science and technology, 53(2), 133-143.
  • 31. Mlekusch, B. (1999), The warpage of corners in the injection moulding of short-fibre-reinforced thermoplastics, Composites science and technology, 59(12), 1923-1931. doi:10.1016/S0266-3538(99)00051-2
  • 32. Oldroyd, J. G. (1947) A rational formulation of the equations of plastic flow for a Bingham solid, Cambridge University Press, In Mathematical Proceedings of the Cambridge Philosophical Society (Vol. 43, No. 1, pp. 100-105).
  • 33. Ramorino, G., Cecchel, S., ve Cornacchia, G. (2020) Effect of Fiber Orientation and Residual Stresses on the Structural Performance of Injection Molded Short-Fiber-Reinforced Components, Advances in Systems Science and Applications, 20(2), 1-19.
  • 34. Sikló, B., Cameron, K. ve Kovács, J. G. (2011) Deformation analysis of short glass fiber-reinforced polypropylene injection-molded plastic parts, Journal of Reinforced Plastics and Composites, 30(16), 1367-1372.
  • 35. Yaşar, H. (2001) Plastikler Dünyası, MMO Yayınları,3-132.
  • 36. Yalçın, B., Ergene, B. (2018). Farklı malzemelere sahip hibrid kompozitlerde çatlağın mekanik davranışlara etkisinin analizi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 24(4), 616-625. doi: 10.5505/pajes.2017.02800
  • 37. Zhou H., Hu Z., Li D. (2013) Computer modeling for injection molding: simulation, optimization, and control, first edition, numerical implementation for the filling and packing simulation.