Güç Elektroniği Sistemleri için HIL (Hardware In The Loop) Simülatör Kartı Tasarımı ve Aktif Güç Filtreleri için Uygulanması

Bu çalışmada, ilk olarak güç elektroniği sistemlerinde kullanılan devrelerin donanım üzerinde çeşitli çalışma şartlarındaki tepkilerini test edebilecek (hardware in the loop) bir genel amaçlı test simülatör devresi geliştirilmiştir. Sonraki aşamada, PAGF için kullanılacak bir kontrol kartı tasarlanmıştır. PAGF için anlık reaktif güç teorisi (IRPT) ve senkron dönen referans çerçeve (SRF) metotlarını kullanan 2 farklı harmonik çıkarım metodu için kontrol yazılımı CubeMX IDE derleyicisi kullanılarak hazırlanmıştır. Son olarak, oluşturulan prototip PAGF kontrol kartı ve yazılımı gerçek sisteme bağlamadan önce tasarlanan test sistemini kullanarak güvenli bir şekilde çalıştığı doğrulanmıştır. Bu çalışma ile hem PAGF prototip devresi hazırlanmış hem de bir donanım test simülatör sistemi uygun maliyetli olarak tasarlanmıştır.

DESIGN OF HARDWARE IN THE LOOP (HIL) SIMULATOR BOARD FOR POWER ELECTRONIC SYSTEMS AND ITS IMPLEMENTATION FOR ACTIVE POWER FILTERS

In this study, firstly, a general-purpose test simulator circuit was developed that could test the response of the circuits used in power electronic systems on hardware under various operating conditions (hardware in the loop). In the next step, a control board to be used for Shunt Active Power Filters (SAPF) was designed. The control software for SAPF was prepared using CubeMX IDE compiler for two different harmonic extraction methods using instantaneous reactive power theory (IRPT) and synchronous rotating reference frame (SRF) methods. Finally, before connecting the prototype SAPF control board and software to the real system, it had been verified to work safely using the designed test system. With this study, both the SAPF prototype circuit was prepared and a cost-effective system that could be found in the market was designed.

___

  • 1. Assiene Mouodo, L. V., Mahamat ALI, A. H., Tamba, J. G., and Olivier, T. S. M. (2022). Comparison and classification of six reference currents extraction algorithms for harmonic compensation on a stochastic power network: Case of the TLC hybrid filter, Cogent Engineering, 9(1), doi:10.1080/23311916.2022.2076322.
  • 2. Arya, S. R., and Singh, B. (2014). Power quality improvement under nonideal AC mains in distribution system, Electric Power Systems Research, 106, 86-94, doi:10.1016/j.epsr.2013.08.008.
  • 3. Balikci, A., Hafezi, H., and Akpınar, E. (2022). Cascaded controller for single-phase shunt active power filter and STATCOM, International Journal of Renewable Energy Technology, 13(1), 28-47, doi:10.1504/IJRET.2022.120329.
  • 4. Bhattacharya, A., Chakraborty, C., and Bhattacharya, S. (2009). Shunt compensation, IEEE Industrial Electronics Magazine, 3(3), 38–49. doi: 10.1109/MIE.2009.933881.
  • 5. Bouscayrol, A. (2010). Hardware-In-the-Loop simulation, in Industrial Elecronics Handbooks, 2nd ed. Chicago, IL, USA: Taylor & Francis, tome 3, ch. M35, Dec. 2010.
  • 6. Corradini, L., Stefanutti, W., and Mattavelli, P. (2008). Analysis of multisampled current control for active filters, IEEE Transactions on Industry Applications, 44(6), 1785–1794. doi: 10.1109/TIA.2008.2006327.
  • 7. Costa-Castello, R., Grino, R., Parpal, R.C., and Fossas, E. (2009). High-performance control of a single-phase shunt active filter, IEEE Transactions on Control Systems Technology, 17(6), 1318–1329. doi:10.1109/TCST.2008.2007494.
  • 8. Çolak, İ., Bayindir, R., Irmak, E., and Kaplan, O. (2011). A comparative study of harmonic extraction methods for single phase shunt active power filter, In 2011 International Conference on Power Engineering, Energy and Electrical Drives,1-4, doi:10.1109/PowerEng.2011.6036515.
  • 9. El-Kholy, E.E., El-Sabbe, A., and Ei-Hefnawy, A. (2006). Three-phase active power filter based on current controlled voltage source inverter, International Journal of Electrical Power & Energy Systems, 28(8), 537–547. doi: 10.1016/j.ijepes.2006.01.007.
  • 10. Kale, M., and Özdemir, E. (2015). A new hysteresis band current control technique for a shunt active filter, Turkish Journal of Electrical Engineering and Computer Sciences, 23(3), 654-665, doi:10.3906/elk-1303-74.
  • 11. Karimi, S., Poure, P. and Saadate, S. (2010). An HIL-Based Reconfigurable Platform for Design, Implementation, and Verification of Electrical System Digital Controllers,", IEEE Transactions on Industrial Electronics, 57(4), 1226-1236, April. doi:10.1109/TIE.2009.2036644.
  • 12. Kumar, R., and Bansal, H. O. (2019). Real‐time implementation of adaptive PV‐ integrated SAPF to enhance power quality, International Transactions on Electrical Energy Systems, 29(5), e12004, doi:10.1002/2050-7038.12004.
  • 13. Kükrer, O., Kömürcügil, H., Guzman, R., and de Vicuna, L. G. (2020). A new control strategy for three-phase shunt active power filters based on FIR prediction. IEEE Transactions on Industrial Electronics, 68(9), 7702-7713, doi:10.1109/TIE.2020.3013761.
  • 14. Kürker, F., and Taşaltın, R. (2016). Elektrik Tesislerinde Harmoniklerin Meydana Getirdiği Kayıpların Analizi, Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, 21-38.
  • 15. Lauss, G., and Strunz, K. (2021). Accurate and Stable Hardware-in-the-Loop (HIL) RealTime Simulation of Integrated Power Electronics and Power Systems, IEEE Transactions on Power Electronics, 36(9), 10920-10932, Sept. doi:10.1109/TPEL.2020.3040071.
  • 16. Mehrasa, M., Pouresmaeil, E., Zabihi, S., Rodrigues, E. M., and Catalão, J. P. (2016). A control strategy for the stable operation of shunt active power filters in power grids, Energy, 96, 325-334. doi:0.1016/j.energy.2015.12.075.
  • 17. Mohd Zainuri, M. A. A., Mohd Radzi, M. A., Che Soh, A., Mariun, N., Abd Rahim, N., Teh, J., and Lai, C. M. (2018). Photovoltaic integrated shunt active power filter with simpler ADALINE algorithm for current harmonic extraction, Energies, 11(5), 1152, doi:10.3390/en11051152.
  • 18. Nassif, A.B., Wilsun, X., and Freitas, W. (2009). An investigation on the selection of filter topologies for passive filter applications, IEEE Transactions on Power Delivery, 24(3), 1710–1718. doi: 10.1109/TPWRD.2009.2016824.
  • 19. Patnaik, S.S., and Panda, A.K. (2013). Three-level H-bridge and three H-bridges-based threephase four-wire shunt active power filter topologies for high voltage applications, International Journal of Electrical Power & Energy Systems, 51, 298–306. doi: 10.1016/j.ijepes.2013.02.037.
  • 20. Patnaik, S. S., and Panda, A. K. (2014). Optimizing current harmonics compensation in three-phase power systems with an Enhanced Bacterial foraging approach, International Journal of Electrical Power & Energy Systems, 61, 386-398, doi:10.1016/j.ijepes.2014.03.05.
  • 21. Peng, F.Z., Akagi, H., and Nabae, A. (1990). A new approach to harmonic compensation in power-systems – a combined system of shunt passive and series active-filters, IEEE Transactions on Industry Applications, 26(6), 983–990. doi: 10.1109/28.62380.
  • 22. Singh, B., Al-Haddad, K., and Chandra, A. (1999). A review of active filters for power quality improvement, IEEE Transactions on Industrial Electronics, 46(5), 960–971. doi: 10.1109/41.793345.
  • 23. Tan, A., Köroğlu, T., Demırdelen, T., İncı, M., Cuma, M. U., Bayindir, K. Ç., and Tümay, M. (2015). Performance investigation of shunt hybrid active power filter with a synchronous reference frame based controller. In 2015 IEEE 6th International Symposium on Power Electronics for Distributed Generation Systems (PEDG) (pp. 1-8), doi:10.1109/PEDG.2015.7223031.
  • 24. Tangtheerajaroonwong, W., Hatada T., Wada K., and Akagi, H. (2007). Design and performance of a transformerless shunt hybrid filter integrated into a threephase diode rectifier, IEEE Transactions on Power Electronics, 22(5), 1882–1889. doi: 10.1109/TPEL.2007.904166.
  • 25. Tsengenes, G., and Adamidis, G. (2011). A multi-function grid connected PV system with three level NPC inverter and voltage oriented control, Solar Energy, 85(11), 2595-2610. doi:10.1016/j.solener.2011.07.017.
  • 26. Vardar, K., Akpınar, E., and Surgevil, T. (2009). Evaluation of reference current extraction methods for DSP implementation in active power filters, Electric Power Systems Research, 79(10), 1342-1352, doi:10.1016/j.epsr.2009.04.004.
  • 27. Verne, S. A., and Valla, M. I. (2010). Active power filter for medium voltage networks with predictive current control, Electric Power Systems Research, 80(12), 1543-1551, doi:10.1016/j.epsr.2010.06.019.
  • 28. Wei L., Chunwen, L., and Changbo, X. (2014). Sliding mode control of a shunt hybrid active power filter based on the inverse system method, International Journal of Electrical Power & Energy Systems, 57, 39-48. doi:10.1016/j.ijepes.2011.10.029.
  • 29. Yarıkkaya, S., and Vardar, K. (2020). Rapid Prototype Development of Single-Phase GridConnected PV Inverter Using STM32F4 and Matlab, Avrupa Bilim ve Teknoloji Dergisi, 18,213- 223. doi:10.31590/ejosat.680586.
  • 30. Zhou, Z.F., and Liu, Y.Z. (2012). Pre-sampled data based prediction control for active power filters, International Journal of Electrical Power & Energy Systems, 37(1), 13–22. doi:10.1016/j.ijepes.2011.10.029.
Uludağ Üniversitesi Mühendislik Fakültesi Dergisi-Cover
  • ISSN: 2148-4147
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2002
  • Yayıncı: BURSA ULUDAĞ ÜNİVERSİTESİ > MÜHENDİSLİK FAKÜLTESİ