H2S’ÜN ELEMENTEL KÜKÜRDE SEÇİCİ OKSİDASYONUNDA Ti-V-Cr ve Ti-V-Fe KATALİZÖRLERİ

Bu çalışmada kompleksleştirme yöntemiyle eşmolar oranda Ti-V-Fe ve Ti-V-Cr katalizörleri sentezlenmiş ve H2S’ün seçici oksidasyon reaksiyonuyla elementel kükürt eldesindeki aktiviteleri incelenmiştir. Katalizörlerin katalitik aktiviteleri dolgulu kolon reaktör sisteminde farklı sıcaklık (200°C, 250°C, 300°C) ve stokiyometrik gaz (O2/H2S:0,5) bileşiminde incelenmiştir. Katalizörlerin yapısal özellikleri N2 adsorpsiyon-desorpsiyon, XRD, TPR, SEM-EDS analizleri ile belirlenmiştir. Sentezlenen katalizörlerin mezogözenekli yapıya sahip olduğu tespit edilmiştir. Ti-V-Cr katalizörünün kristal yapısı TiO2’in rutile fazı ve Cr2O3 bileşiklerinden oluşurken, Ti-V-Fe katalizörü kompleks bir kristal yapı sergilemiştir. Bu katalizörün yapısında Fe2TiO5, V2O5, FeV2O4, rutile TiO2 ve Fe2O3 bileşikleri görülmüştür. Sentezlenen her iki katalizörle de 250°C reaksiyon sıcaklığında % 100 H2S dönüşümü elde edilmiştir. Reaksiyon sıcaklığındaki artış ve azalış katalizörlerde elde edilen H2S dönüşümünde azalmaya sebep olmuştur. Bunun yanı sıra çalışılan tüm şartlarda her iki katalizörle de oldukça yüksek (≥% 97) elementel kükürt seçiciliği elde edilmiştir.  Özellikle 200°C sıcaklıkta, yapısında kompleks bileşikleri içeren Ti-V-Fe katalizörü ile (% 73 H2S dönüşümü) Ti-V-Cr katalizörüne kıyasla (% 51 H2S dönüşümü) daha yüksek dönüşüm elde edilmiştir. 

Ti-V-Cr and Ti-V-Fe Catalysts for H2S Selective Oxidation to Elemental Sulfur

In this study, Ti-V-Fe and Ti-V-Cr catalysts were synthesized by complexation method and their activities were investigated for H2S selective oxidation reaction to elemental sulfur. Structural properties of the catalysts were determined by N2 adsorption-desorption, XRD, TPR, SEM-EDS analyzes. According to the analysis results, it has been found that the synthesized catalysts have a mesoporous structure. Ti-V-Fe catalyst exhibits a complex crystal structure, while the crystal structure of the Ti-V-Cr catalyst is comprised of the rutile phase of TiO2 and Cr2O3 compounds. In this catalyst structure, Fe2TiO5, V2O5, FeV2O4, rutile TiO2 and Fe2O3 compounds were observed. The catalytic activities of the catalysts were investigated in a packed column reactor system at different temperatures (200°C, 250°C, 300°C) and stoichiometric gas composition (O2/H2S:0.5). 100% H2S conversion was obtained at 250°C reaction temperature with both catalysts synthesized. The increase and decrease in the reaction temperature led to a decrease in the conversion of H2S obtained with the catalysts due to the increase in sulfur deposition in the catalyst structure. In addition, under all conditions studied, elemental sulfur selectivity was high (≥ 97%) with both catalysts. Espe,cially at 200°C, a higher conversion was obtained with Ti-V-Fe (73% H2S conversion) catalyst which has complex compounds in the structure compared to Ti-V-Cr catalyst (51% H2S conversion).

___

  • Brundle, C.R., Evans, C.A. (1992) Materials characterization series, In: I.E. Wachs (ed.), Characterization of catalytic materials, Boston.
  • Caceres, C.V., Fierro, J.L., Agudo, A.L., Soria, J. (1990) Effect of support on the surface characteristics of supported molybdena catalysts, Journal of Catalysis, 122,113-125. https://doi.org/10.1016/0021-9517(90)90265-L
  • Chun, S.W., Jang, J.Y., Park, D.W., Woob, H.C., Chung, J.S. (1998) Selective oxidation of H2S to elemental sulfur over TiO2/SiO2 catalysts. Applied Catalysis B: Environmental, 16, 235–243. https://doi.org/10.1016/S0926-3373(97)00078-7
  • Eslek, D.D., Yasyerli, S. (2009) Selectivity and stability enhancement of iron oxide catalyst by ceria incorporation for selective oxidation of H2S to sulfur, Industrıal & Engineering Chemistry Research, 48, 5223–5229. DOI: 10.1021/ie8017059
  • Ilieva, L.I., Andreeva, D.H. (1995) Investigation of the chromium oxide system by means of temperature-programmed reduction, Thermochim Acta, 265,223-31. https://doi.org/10.1016/0040-6031(95)98772-Q
  • Jiang, F., Wei, X., Niu, L., Xiao, G. (2013) Vanadium-chromium oxide: Effective catalysts for ammoxidation of 3-picoline, Advanced Materials Research, 634-638, 624-627. DOI: 10.4028/www.scientific.net/AMR.634-638.624
  • Jung, S.J., Kim, M.H., Chung, J.K., Moon, M.J., Chung, J.S., Park, D.W., Woo, H.C. (2003) Catalytic oxidation of H2S to elemental sulfur over mesoporous Nb/Fe mixed oxides, Studies in Surface Science and Catalysis, 146, 621–624. https://doi.org/10.1016/S0167-2991(03)80460-3
  • Keller, N., Huu, C.P., Ledoux, M.J. (2001) Continuous process for selective oxidation of H2S over SiC-supported iron catalysts into elemental sulfur above its dewpoint, Applied Catalysis A: General, 217, 205–217. https://doi.org/10.1016/S0926-860X(01)00601-9
  • Kim, M., Ju, W.D., Kim, K.H., Park, D.W., Hong, S.S. (2006) Selective oxidation of hydrogen sulfide to elemental surfur and ammonium thiosulfate using VOx/TiO2 catalysts, Studies in Surface Science and Catalysis, 159, 225-228. DOI:10.1016/S0167-2991(06)81574-0
  • Kirk-Otmer. (1992) Encyclopedia of Chemical Technology, 4.Basım, New York.
  • Kohl, A.L., Nielsen, R.B. (1997) Gas Purification, 5.Basım, Texas.
  • Li, K.T., Wu, K.S. (2001) Selective oxidation of hydrogen sulfide to Sulfur on vanadium-based catalysts containing tin and antimony, Industrial Engineering Chemistry Research, 40, 1052-1057. DOI: 10.1021/ie0007015
  • Li, K.T., Huang, C.H. (2006) Selective oxidation of hydrogen sulfide to sulfur over LaVO4 catalyst: Promotional effect of antimony oxide addition, Industrial Engineering Chemistry Research, 45, 7096-7100. DOI: 10.1021/ie060384n
  • Li, K.T., Huang, C.H. (2011) Hydrogen sulfide oxidation on RE (RE = Sm, Y, La)–V–Sb catalysts: Effects of RE size and electronegativity, Catalysis Today, 174, 25–30. doi:10.1016/j.cattod.2011.03.070
  • Li, K.T., Yen, C.S., Shyu, N.S. (1997) Mixed-metal oxide catalysts containing iron for selective oxidation of hydrogen sulfide to sulfur, Applied Catalysis A: General, 156, 117–130. https://doi.org/10.1016/S0926-860X(96)00417-6
  • Liao, S.J., Chen, T., Miao, C.X., Yang, W.M., Xie, Z.K., Chen, Q.L. (2008) Effect of TiO2 on the structure and catalytic behavior of iron-potassium oxide catalyst for dehydrogenation of ethylbenzene to styrene, Catalysis Communication, 9, 1817-1821. https://doi.org/10.1016/j.catcom.2008.02.009
  • Lowell, S., Shield,J. (1984) Powder surface area and porosity, 2. Basım, New York.
  • Marcilly, C., Courty, P., Delmon, B. (1970). Preparation of highly dispersed mixed oxides and oxide solid solutions by pyrolysis of amorphous precursors, Journal of the American Ceramic Society, 53, 56-57. DOI: 10.1111/j.1151-2916.1970.tb12003.x
  • Nagaraju, P., Lingaiah, N., Balaraju, M., Sai Prasad, P.S. (2008) Studies on vanadium-doped iron phosphate catalysts for the ammoxidation of methylpyrazine, Applied Catalysis A: General, 339, 99–107. https://doi.org/10.1016/j.apcata.2007.09.032
  • Palma, V., Barba, D. (2014) Low temperature catalytic oxidation of H2S over V2O5/ CeO2 catalysts, Int. J. of Hydrogen Energy, 39, 21524-21530. https://doi.org/10.1016/j.ijhydene.2014.09.120
  • Park , D.W., Park , B.K., Park, D.K, Woo, H.C. (2002) Vanadium-antimony mixed oxide catalysts for the selective oxidation of H2S containing excess water and ammonia. Applied Catalysis A: General, 223, 215–224. https://doi.org/10.1016/S0926-860X(01)00760-8
  • Shin, M.Y., Park, D.W., Chung, J.S. (2000) Vanadium-containing catalysts for the selective oxidation of H2S to elemental sulfur in the presence of excess water, Catalysis Today, 63, 405–411. https://doi.org/10.1016/S0920-5861(00)00485-5
  • Sing, K.S.W, Haul, R.A.W, Pierotti, R.A., Siemieniewska, T. (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure and Applied Chemistry, 57, 603–619. DOI: https://doi.org/10.1515/iupac.57.0007
  • Smith, D.K., Mrose, M.E., Berry, L.G., Bayliss, P. (1974) Selected Powder Diffraction Data for Minerals, 1.Basım, Pennsylvania.
  • Tasdemir, H.M., Yasyerli, S., Yasyerli, N. (2015) Selective catalytic oxidation of H2S to elemental sulfur over titanium based Ti-Fe, Ti-Cr and Ti-Zr catalysts, Int. J. of Hydrogen Energy, 40, 9989-10001. http://dx.doi.org/10.1016/j.ijhydene.2015.06.056
  • Taşdemir, H.M., Yağızatlı, Y., Yaşyerli, S., Yaşyerli, N., Doğu, G. (2017) Ce-O catalysts for elemental sulfur production via selective oxidation of H2S, Journal of the Faculty of Engineering and Architecture of Gazi University, 32(3), 831-841. DOI: 10.17341/gazimmfd.337632
  • Yasyerli, S., Dogu, G., Ar, İ., Dogu, T. (2003) Breakthrough analysis of H2S removal on Cu-V-Mo, Cu-V and Cu-Mo mixed oxides, Chemical Engineering Communication, 190, 1055-1072, DOI: 10.1080/00986440390207602
  • Yasyerli, S., Dogu, G., Ar, İ., Dogu, T. (2004) Dynamic analysis of removal and selective oxidation of H2S to elemental sulfur over Cu–V and Cu–V–Mo mixed oxides in a fixed bed reactor, Chemical Engineering Science, 59, 4001 – 4009. DOI: 10.1016/j.ces.2004.03.045
  • Yasyerli, S., Dogu, G., Dogu, T. (2006) Selective oxidation of H2S to elemental sulfur over Ce–V mixed oxide and CeO2 catalysts prepared by the complexation technique. Catalysis Today, 117, 271–278. https://doi.org/10.1016/j.cattod.2006.05.030
  • Zhang, X., Tang, Y., Qu, S., Da, J., Hao, Z. (2014) H2S-selectşve catalytic oxidation: Catalysts and processes, ACS Catalysis, 5, 1053-1067. DOI: 10.1021/cs501476p
  • Zhu, H., Qin, Z., Shan, W., Shen, W., Wang, J. (2004) Pd/CeO2-TiO2 catalyst for CO oxidation at low temperature: a TPR study with H2 and CO as reducing agents, Journal of Catalysis, 225, 267-277. https://doi.org/10.1016/j.jcat.2004.04.006