ATMOSFERİK BASINÇLI PLAZMA UYGULAMASININ 3B BASKILARA ETKİSİNİN İNCELENMESİ

Atmosferik basınçlı plazma, toz veya organik maddeden temizleme gibi yüzey özelliklerini iyileştirmek veya boyama ve kaplama için iyi yapışma özellikleri elde etmek için yaygın olarak kullanılanbir yöntemdir. Bu çalışmanın temel amacı, polilaktik asidin (PLA) daha yüksek yüzey enerjisi ve dolayısıyla iyi yapışma özellikleri sağlamak için plazma işleme uygulamasında optimum parametreseviyelerini belirlemektir. Yüzey enerjisi doğrudan yüzey temas açısı ile ilgili olduğundan, deneysel çalışma su temas açısının en aza indirilmesine dayanmaktadır. Sonuç, optimum parametre seviyeleri ile muamele edilmiş bir numune ile temas açısında yaklaşık %45 oranında kayda değer bir gelişme olduğunu göstermektedir. PLA'nın ıslanabilirliği, atmosferik plazma yüzey işleminin uygulanmasıyla geliştirilmiştir. Bu sonuçtan hareketle, tabakalar arası bağlanma performansının plazma işlemi ile de güçlendirileceği hipotezi ile her bir tabakada plazma ile muamele edilmiş PLA ile FDM ile üretilen numunelerin mukavemetini araştırmak için daha ileri çalışmalar yapılacaktır.

Investigation of the Effect of Atmospheric Pressure Plasma Treatment on 3D Printing

Atmospheric Pressure Plasma is a commonly used method to improve surface properties such as cleaning from soil or organic substance or to achieve good adhesion properties for painting and coating. The main objective of this study is to determine the optimum parameter levels for plasma treatment application to provide higher surface energy and therefore good adhesion properties of the polylactic acid (PLA). Since the surface energy is directly related to surface contact angle, experimental study is based on minimizing the water contact angle. The result shows remarkable improvement in contact angle about 45% with a sample treated with optimum parameter levels. The wettability of PLA has been improved with the application of an atmospheric plasma surface treatment. Starting from this result, with the hypothesis that interlayer bonding performance will be strengthened with plasma treatment too, further studies will be to investigate strength of the FDM manufactured samples with plasma treated PLA at each layer.

___

  • 1. Abourayana, H., Dobbyn, P., Dowling, D. 2018. Enhancing the mechanical performance of additive manufactured polymer components using atmospheric plasma pre-treatments. Plasma Processes and Polymers, 15(3):. https://doi.org/10.1002/ppap.201700141
  • 2. Ahn, S. H., Montero, M., Odell, D., Roundy, S., Wright, P. K. 2002. Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyping Journal, 8(4):, 248–257. https://doi.org/10.1108/13552540210441166
  • 3. Alafaghani, Ala’aldin, Qattawi, A., Ablat, M. A. 2017. Design Consideration for Additive Manufacturing: Fused Deposition Modelling. Open Journal of Applied Sciences, 07(06):, 291–318. https://doi.org/10.4236/ojapps.2017.76024
  • 4. Alafaghani, Ala’aldin, Qattawi, A., Alrawi, B., Guzman, A. 2017. Experimental Optimization of Fused Deposition Modelling Processing Parameters: A Design-for-Manufacturing Approach. Procedia Manufacturing, 10:, 791–803. https://doi.org/10.1016/j.promfg.2017.07.079
  • 5. Ayas, K. 2021. Atmosferı̇k basinçli plazma uygulamasi ı̇le polı̇propı̇len malzemelerde yüzey ı̇şlemlerı̇. , 1179–1190. https://doi.org/10.17482/uumfd.977508
  • 6. Balderrama-Armendariz, C. O., MacDonald, E., Espalin, D., Cortes-Saenz, D., Wicker, R., Maldonado-Macias, A. 2018. Torsion analysis of the anisotropic behavior of FDM technology. International Journal of Advanced Manufacturing Technology, 96(1–4):, 307–317. https://doi.org/10.1007/s00170-018-1602-0
  • 7. Bryll, K., Piesowicz, E., Szymański, P., Slaczka, W., Pijanowski, M. 2018. Polymer Composite Manufacturing by FDM 3D Printing Technology. MATEC Web of Conferences, 237:, 0–6. https://doi.org/10.1051/matecconf/201823702006
  • 8. Caminero, M. Á., Chacón, J. M., García-Plaza, E., Núñez, P. J., Reverte, J. M., Becar, J. P. 2019. Additive manufacturing of PLA-based composites using fused filament fabrication: Effect of graphene nanoplatelet reinforcement on mechanical properties, dimensional accuracy and texture. Polymers, 11(5):. https://doi.org/10.3390/polym11050799
  • 9. Dawoud, M., Taha, I., Ebeid, S. J. 2016. Mechanical behaviour of ABS: An experimental study using FDM and injection moulding techniques. Journal of Manufacturing Processes, 21:, 39–45. https://doi.org/10.1016/j.jmapro.2015.11.002
  • 10. Es-Said, O. S., Foyos, J., Noorani, R., Mendelson, M., Marloth, R., Pregger, B. A. 2000. Effect of layer orientation on mechanical properties of rapid prototyped samples. Materials and Manufacturing Processes, 15(1):, 107–122. https://doi.org/10.1080/10426910008912976
  • 11. Esen, S. G., Altuncu, E., Üstel, F., Akpınar, S. 2016. Atmosferik plazma yüzey aktivasyon işlemi ile farklı yüzey tarama hızlarının polipropilen yüzey ıslatma özelliklerine etkisi Different plasma scannıng velocities effect on surface wettability properties of polypropylene by atmospheric plasma surface activ. , 307–316.
  • 12. Forster, A. M. 2015. Materials testing standards for additive manufacturing of polymer materials: State of the art and standards applicability. Additive Manufacturing Materials: Standards, Testing and Applicability, 67–123.
  • 13. Hamza, I., Abdellah, E. G., Mohamed, O. 2018. Experimental optimization of fused deposition modeling process parameters: A Taguchi process approach for dimension and tolerance control. Proceedings of the International Conference on Industrial Engineering and Operations Management, 2018(JUL):, 2992–2993.
  • 14. Jordá-Vilaplana, A., Fombuena, V., García-García, D., Samper, M. D., Sánchez-Nácher, L. 2014. Surface modification of polylactic acid (PLA) by air atmospheric plasma treatment. European Polymer Journal, 58:, 23–33. https://doi.org/10.1016/j.eurpolymj.2014.06.002
  • 15. Keleş, Ö., Anderson, E. H., Huynh, J. 2018. Mechanical reliability of short carbon fiber reinforced ABS produced via vibration assisted fused deposition modeling. Rapid Prototyping Journal, 24(9):, 1572–1578. https://doi.org/10.1108/RPJ-12-2017-0247
  • 16. Kishore, V., Ajinjeru, C., Nycz, A., Post, B., Lindahl, J., Kunc, V., Duty, C. 2017. Infrared preheating to improve interlayer strength of big area additive manufacturing (BAAM) components. Additive Manufacturing, 14:, 7–12. https://doi.org/10.1016/j.addma.2016.11.008
  • 17. Koch, C., Van Hulle, L., Rudolph, N. 2017. Investigation of mechanical anisotropy of the fused filament fabrication process via customized tool path generation. Additive Manufacturing, 16:, 138–145. https://doi.org/10.1016/j.addma.2017.06.003
  • 18. Li, G., Zhao, J., Wu, W., Jiang, J., Wang, B., Jiang, H., Fuh, J. Y. H. 2018. Effect of ultrasonic vibration on mechanical properties of 3D printing non-crystalline and semi-crystalline polymers. Materials, 11(5):. https://doi.org/10.3390/ma11050826
  • 19. Li, J., Cai, C. L. 2011. The carbon fiber surface treatment and addition of PA6 on tensile properties of ABS composites. Current Applied Physics, 11(1):, 50–54. https://doi.org/10.1016/j.cap.2010.06.017
  • 20. Mei, H., Ali, Z., Yan, Y., Ali, I., Cheng, L. 2019. Influence of mixed isotropic fiber angles and hot press on the mechanical properties of 3D printed composites. Additive Manufacturing, 27(November 2018):, 150–158. https://doi.org/10.1016/j.addma.2019.03.008
  • 21. Moza, Z., Kitsakis, K., Kechagias, J., Mastorakis, N. 2015. Optimizing Dimensional Accuracy of Fused Filament Fabrication using Taguchi Design. Tarihinde adresinden erişildi http://www.wseas.us/e- library/conferences/2015/Salerno/IMAS/IMAS-14.pdf
  • 22. Narahara, H., Shirahama, Y., Koresawa, H. 2016. Improvement and Evaluation of the Interlaminar Bonding Strength of FDM Parts by Atmospheric-Pressure Plasma. Procedia CIRP, 42(Isem Xviii):, 754– 759. https://doi.org/10.1016/j.procir.2016.02.314
  • 23. Ning, F., Cong, W., Hu, Y., Wang, H. 2017. Additive manufacturing of carbon fiber-reinforced plastic composites using fused deposition modeling: Effects of process parameters on tensile properties. Journal of Composite Materials, 51(4):, 451–462. https://doi.org/10.1177/0021998316646169
  • 24. Ning, F., Cong, W., Qiu, J., Wei, J., Wang, S. 2015. Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Composites Part B: Engineering, 80:, 369–378. https://doi.org/10.1016/j.compositesb.2015.06.013
  • 25. Rajpurohit, S. R., Dave, H. K. 2018. Flexural strength of fused filament fabricated (FFF) PLA parts on an open-source 3D printer. Advances in Manufacturing, 6(4):, 430–441. https://doi.org/10.1007/s40436-018-0237-6
  • 26. Sezer, H. K., Eren, O., Börklü, H. R., Özdemir, V. 2019. Additive manufacturing of carbon fiber reinforced plastic composites by fused deposition modelling: Effect of fiber content and process parameters on mechanical properties. Journal of the Faculty of Engineering and Architecture of Gazi University, 34(2):, 663–674. https://doi.org/10.17341/gazimmfd.416523
  • 27. Shih, C. C., Burnette, M., Staack, D., Wang, J., Tai, B. L. 2019. Effects of cold plasma treatment on interlayer bonding strength in FFF process. Additive Manufacturing, 25(October 2018):, 104–111. https://doi.org/10.1016/j.addma.2018.11.005
  • 28. Srivastava, M., Rathee, S. 2018. Optimisation of FDM process parameters by Taguchi method for imparting customised properties to components. Virtual and Physical Prototyping, 13(3):, 203–210. https://doi.org/10.1080/17452759.2018.1440722
  • 29. Sun, Q., Rizvi, G. M., Bellehumeur, C. T., Gu, P. 2008. Effect of processing conditions on the bonding quality of FDM polymer filaments. Rapid Prototyping Journal, 14(2):, 72–80. https://doi.org/10.1108/13552540810862028
  • 30. Tekinalp, H. L., Kunc, V., Velez-Garcia, G. M., Duty, C. E., Love, L. J., Naskar, A. K., Blue, C. A., Ozcan, S. 2014. Highly oriented carbon fiber-polymer composites via additive manufacturing. Composites Science and Technology, 105:, 144–150. https://doi.org/10.1016/j.compscitech.2014.10.009
  • 31. Turgut, M., Çavdar, K. 2019. ATMOSFERİK PLAZMA YÜZEY İŞLEMİ İLE FARKLI ŞARTLAR ALTINDA KAUÇUK -NONWOVEN ARASI YAPIŞMA DAVRANIŞININ GELİŞTİRİLMESİ Mehmet TURGUT, Bursa Uludağ University.
  • 32. Wang, J., Xie, H., Weng, Z., Senthil, T., Wu, L. 2016. A novel approach to improve mechanical properties of parts fabricated by fused deposition modeling. Materials and Design, 105:, 152–159. https://doi.org/10.1016/j.matdes.2016.05.078
  • 33. Wimpenny, D. I., Pandey, P. M., Jyothish Kumar, L. 2016. Advances in 3D Printing & additive manufacturing technologies. Advances in 3D Printing and Additive Manufacturing Technologies, 1–186. https://doi.org/10.1007/978-981-10-0812-2
  • 34. WO 2016/154103 A1.
  • 35. WO 2018/156458 A1.
  • 36. Yasa, E., Ersoy, K. 2019. Dimensional accuracy and mechanical properties of chopped carbon reinforced polymers produced by material extrusion additive manufacturing. Materials, 12(23):, 3885. https://doi.org/10.3390/ma122333885
  • 37. Zaldivar, R. J., Witkin, D. B., McLouth, T., Patel, D. N., Schmitt, K., Nokes, J. P. 2017. Influence of processing and orientation print effects on the mechanical and thermal behavior of 3D-Printed ULTEM ® 9085 Material. Additive Manufacturing, 13:, 71–80. https://doi.org/10.1016/j.addma.2016.11.007
  • 38. https://www.relyon-plasma.com/surface-energy/?lang=en, (17.01.2022)
  • 39. https://www.ossila.com/pages/contact-angle-theory-measurement#What-is-a-contact-angle, (19.01.2022)