ANALYSIS OF SIGNAL-TO-CROSSTALK RATIO VARIATIONS DUE TO FOUR-WAVE MIXINGIN DENSE WAVELENGTH DIVISION MULTIPLEXING SYSTEMS IMPLEMENTED WITHSTANDARD SINGLE-MODE FIBERS
Bu makalede, G.652 standart tek-modlu optik fiber (SSMF) kullanan, 12.5 GHz, 25 GHz, 50 GHz ve 100 GHz eşit kanallar arası boşluk değerlerine sahip, 5, 7 ve 9 kanallı yoğun dalgaboyu bölmeli çoğullama sistemlerinin (DWDM) merkez kanallarında, dört dalga karışımı (FWM) etkisinden kaynaklanan işaret çapraz karışım oranlarının (SXR) değişimi incelenmiştir. Belirtilen tipteki sistemlerde, merkez kanallar, tüm kanallar arasında FWM olayından en ağır şekilde etkilenen kanallardır. Bu nedenle, incelemeden elde edilen sonuçlar DWDM sistem performansı için en kötü hal değerleri olup sistem tasarımı açısından önemlidir. Benzetimler, SSMF fiberler için Uluslararası Haberleşme Birliği Haberleşme Standardizasyon Birimi'nin (ITU-T) G.652 Tavsiyesi'nde belirtilen değerler aralığında bulunan farklı değerlerdeki kromatik dispersiyon, dispersiyon eğimi, doğrusalsızlık katsayısı ve zayıflama katsayısı tasarım parametrelerine sahip üç farklı SSMF ticari ürününü kullanan sistemler için gerçekleştirilmiştir. Benzetimlerde, FWM etkisi altında, kanal giriş güçlerindeki, kanallar arası boşluk değerlerindeki ve fiber uzunluklarındaki değişimler ile SXR'ın nasıl değiştiği gözlemlenmiştir. Sonuçlar, optik fiber ve sistem tasarım parametrelerinin DWDM sistemlerin FWM performansı üzerindeki birleşik etkisini göstermekte olup DWDM sistemlerin hem uzak mesafe hem de erişim ağı uygulamaları için önemli ipuçları vermektedir
___
- Chand, S. (2000) Review carbon fibers for composites, Journal of Materials Science, 35(6), 1303-1313. DOI: 10.1023/A:1004780301489
- Chen, H., Roy, A., Baek, J. B., Zhu, L., Qu, J., Dai, L. (2010) Controlled growth and modification of vertically-aligned carbon nanotubes for multifunctional applications, Materials Science and Engineering R, 70, 63-91. DOI: 10.1016/j.mser.2010.06.003
- Delamar, M., Desarmot, G., Fagebaume, O., Hitmi, R., Pinsonc, J., Saveant, J. M. (1997) Modification of carbon fiber surfaces by electrochemical reduction of aryl diazonium salts: Application to carbon epoxy composites, Carbon, 35(6), 801-807. DOI: 10.1016/S0008- 6223(97)00010-9
- Liu, Z., Wang, J., Kushvaha, V., Poyraz, S., Tippur, H., Park, S., Kim, M., Liu, Y., Bar, J., Chen, H., Zhang, X. (2011) Poptube approach for ultrafast nanotube growth, Chemical Communications, 47, 9912-9914. DOI: 10.1039/c1cc13359d
- Poyraz, S., Liu, Z., Liu, Y., Zhang, X. (2013) Devulcanization of scrap ground tire rubber and successive carbon nanotube growth by microwave irradiation, Current Organic Chemistry, 17, 2243-2248. DOI: 10.2174/13852728113179990049
- Poyraz, S., Zhang, L., Schroder, A., Zhang, X. (2015) Ultrafast microwave welding/reinforcing approach at the interface of thermoplastic materials, ACS Applied Materials and Interfaces, 7, 22469-22477. DOI: 10.1021/acsami.5b06484
- Samsur, R., Rangari, V. K., Jeelani, S., Zhang, L., Cheng, Z. Y. (2013) Fabrication of carbon nanotubes grown woven carbon fiber/epoxy composites and their electrical and mechanical properties, Journal of Applied Physics, 113(21), 214903-214908. DOI: 10.1063/1.4808105
- Thostenson, E., Ren, Z., Chou, T. (2001) Advances in the science and technology of carbon nanotubes and their composites: a review, Composites Science and Technology, 61(13), 1899-1912. DOI: 10.1063/1.1466880
- Thostenson, E. T., Li, W. Z., Wang, D. Z., Ren, Z. F., Chou, T. W. (2002) Carbon nanotube/carbon fiber hybrid multiscale composites, Journal of Applied Physics, 91(9), 6034-6037. DOI: 10.1016/S0266-3538(01)00094-X
- Xie, H., Poyraz, S., Thu, M., Liu, Y., Snyder, E. Y., Smith, J. W., Zhang, X. (2014) Microwave-assisted fabrication of carbon nanotubes decorated polymeric nano-medical platforms for simultaneous drug delivery and magnetic resonance imaging, RSC Advances, 4, 5649-5662. DOI: 10.1039/c3ra45913f
- Xu, B., Wang, X., Lu, Y. (2006) Surface modification of polyacrylonitrile-based carbon fiber and its interaction with imide, Applied Surface Science, 253(5), 2695-2701. DOI: 10.1016/j.apsusc.2006.05.044
- Yu, B., Jiang, Z., Tang, X. Z., Yue, C. Y., Yang, J. (2014) Enhanced interphase between epoxy matrix and carbon fiber with carbon nanotube-modified silane coating, Composites Science and Technology, 99, 131-140. DOI: 10.1016/j.compscitech.2014.05.021
- Yuan, H., Wang, C., Zhang, S., Lin, X. (2012) Effect of surface modification on carbon fiber and its reinforced phenolic matrix composite, Applied Surface Science, 259, 288-293. DOI: 10.1016/j.apsusc.2012.07.034
- Zhao, Z. G., Ci, L. J., Cheng, H. M., Bai, J. B. (2005) The growth of multi-walled carbon nanotubes with different morphologies on carbon fibers, Carbon, 43, 651-673. DOI: 10.1016/j.carbon.2004.10.013