The Effects of Fenarimol and Methyl Parathion on Glucose 6-Phosphate Dehydrogenase Enzyme Activity in Rats

Fenarimol and methyl parathion are pesticides that have been used in agriculture for several years. These pesticides have significant effects on environmental and human health. Therefore, we investigated the effects of methyl parathion and fenarimol on glucose 6-phosphate dehydrogenase (EC 1.1.1.49) enzyme activity in rats. The glucose 6-phosphate dehydrogenase is the first enzyme of the pentose phosphate pathway and it is important in detoxifying reactions by NADPH generated. In this study, wistar albino rats administrated with methyl parathion (7 mg kg–1) and fenarimol (200 mg kg−1) by intraperitoneally for different periods (2, 4, 8, 16, 32, 64, and 72 h). The glucose 6-phosphate dehydrogenase enzyme activity was assayed in liver, kidney, brain, and small intestine in male and female rats. The exposure of fenarimol and methyl parathion caused increase of glucose 6-phosphate dehydrogenase enzyme activity in rat tissues, especially at last periods. We suggest that this increment of enzyme activity may be the reason of toxic effects of fenarimol and methyl parathion.

The Effects of Fenarimol and Methyl Parathion on Glucose 6-Phosphate Dehydrogenase Enzyme Activity in Rats

Fenarimol and methyl parathion are pesticides that have been used in agriculture for several years. These pesticides have significant effects on environmental and human health. Therefore, we investigated the effects of methyl parathion and fenarimol on glucose 6-phosphate dehydrogenase (EC 1.1.1.49) enzyme activity in rats. The glucose 6-phosphate dehydrogenase is the first enzyme of the pentose phosphate pathway and it’s important in detoxifying reactions by NADPH generated. In this study, wistar rats administrated with methyl parathion (7 mg.kg–1) and fenarimol (200 mg.kg−1) by intraperitoneally for different periods (2, 4, 8, 16, 32, 64, and 72 h). The glucose 6-phosphate dehydrogenase enzyme activity was assayed in liver, kidney, brain and small intestine in male and female rats. The exposure of fenarimol and methyl parathion caused increase of glucose 6-phosphate dehydrogenase enzyme activity in rat tissues especially last periods. We suggest that this increment of enzyme activity may be reason of toxic effects of fenarimol and methyl parathion.

___

  • Abdel-Mobdy, Y.E., El-Beltagi, H.S., Abdel-Mobdy, A.E., 2017. Alleviation of carbofuran toxicity effect by parsley on lipids profile of male albino rats. Fresenius Environmental Bulletin, 26(7): 4764-4773.
  • Aktar, M.W., Sengupta, D., Chowdhury, A., 2009. Impact of pesticides use in agriculture: Their benefits and hazards. Interdisciplinary Toxicology, 2(1): 1-12.
  • Anonymous, 1998. US EPA Methyl Parathion Hazard Characterization. United States Environmental Protection Agency (US EPA), Washington, DC, 20460, USA.
  • Arias-Estevez, M., Lo´pez-Periago, E., Marti´nez-Carballo, E., Simal-Ga´ndara, J., Mejuto Juan, C., Garci´a-Ri´o, L., 2008. The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agriculture, Ecosystems & Environment, 123(4): 247-260.
  • Beydemir, S., Gülçin, I., Kufrevioğlu, O.I., Çiftçi, M., 2003. Glucose 6-phosphate dehydrogenase: In vitro and in vivo effects of dantrolene sodium. Polish Journal of Pharmacology, 55(5): 787-792.
  • Bohringer, M., 1973. GmbH., G6PD: Glucose 6-Phosphate Dehydrogenase. Biochemica Information I, pp. 99.
  • Bradford, M.M., 1976. A rapid and sensitive for the quantitation of microgram quantitites of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248-254.
  • Costa, N.O., Vieira, M.L., Sgarioni, V., Pereira, M.R., Montagnini, B.G., Mesquita Sde, F., Gerardin, D.C., 2015. Evaluation of the reproductive toxicity of fungicide propiconazole in male rats. Toxicology, 335: 55-61.
  • De Castro, V.L., De Mello, M.A., Poli, P., Zucchi, T.M., 2005. Prenatal and perinatal fenarimol-induced genotoxicity in leukocytes of in vivo treated rats. Mutation Research, 583(1): 95-104.
  • Ekinci, D., Beydemir, S., 2010. Risk assessment of pesticides and fungicides for acid–base regulation and salttransportin rainbow trouttissues. Pesticide Biochemistry and Physiology, 97(1): 66-70.
  • Frederiks, W.M., Vreeling-Sindelárová, H., 2001. Localization of glucose-6- phosphate dehydrogenase activity on ribosomes of granular endoplasmic reticulum, in peroxisomes and peripheral cytoplasm of rat liver parenchymal cells. The Histochemical Journal, 33(6): 345-353.
  • Friedmann, A.S., 2002. Atrazineinhibition of testosterone production in rat males following peripubertal exposure. Reproductive Toxicology, 16(3): 275-279.
  • Gül, S., Belge Kurutas, E., Yıldız, E., Sahan, A., Doran, F., 2004. Pollution correlated modifications of liver antioxidant systems and histopathology of fish (Cyprinidae) living in Seyhan Dam Lake, Turkey. Environment International, 30(5): 605-609.
  • Igbedioh, S.O., 1991. Effects of agricultural pesticides on humans, animals and higher plants in developing countries. Archives of Environmental Health, 46(4): 218.
  • Joshi, S.C., Mathur, R., Gajraj, A., Sharma, T., 2003. İnfluence of methyl parathiom on reproductive parameters in male rats. Environmental Toxicology and Pharmacology, 14(3): 91-98.
  • Karadeniz, H., Yenisoy Karakaş, S., 2015. Spatial distributions and seasonal variations of organochlorine pesticidesin waterandsoil samplesinBolu, Turkey. Environmental Monitoring and Assessment, 187(3): 94.
  • Kaur, R., Sandhu, H.S., 2008. In vivo changes in antioxidant system and protective role of selenium in chlorpyrifos-induced subchronic toxicity in Bubalus bubalis. Environmental Toxicology and Pharmacology, 26(1): 45-48.
  • Khan, S., Priyamvada, S., Khan, S.A., Khan, W., Yusufi, A.N.K., 2017. Studies on Hexachlorobenzene (HCB) Induced Toxicity and Oxidative Damage in the Kidney and Other Rat Tissues. International Journal of Drug Metabolism & Toxicology, 1(1): 1-9.
  • Liu, P., Song, X.X., Wen, W.H., Yuan, W.H., Chen, X.M., 2006. Effects of mixed cypermethrin and methylparathion on endocrine hormone levels and immune functions in rats: II. Interaction. Wei Sheng Yan Jiu= Journal of hygiene research, 35(5): 531-533.
  • Moorthy, K.S., Kasi Reddy, B., Swami, K.S., Chetty, C.S., 1985. Glucose metabolism in hepatopancreas and gill of Lamellidens marginallis during methyl parathion toxicity. Pesticide Biochemistry and Physiology, 24(1): 40-44.
  • Oh, K., Matsumoto, T., Yamagami, A., Hoshi, T., Nakano, T., Yoshizawa, Y., 2015, Fenarimol, a Pyrimidine-Type Fungicide, İnhibits Brassinosteroid Biosynthesis. İnternational Journal of Molecular Science, 16(8): 17273-17288.
  • Ojha, A., Srivastava, N., 2012. Redox imbalance in rat tissues exposed with organophosphate pesticides and therapeutic potential of antioxidant vitamins. Ecotoxicology and Environmental Safety, 75(1): 230-241.
  • Ojha, A., Gupta, Y.K., 2015. Evaluation of genotoxic potential of commonly used organophosphate pesticides in peripheral blood lymphocytes of rats. Human & Experimental Toxicology, 34(4): 390-400.
  • Paolini, M., Mesirca, R., Pozzetti, L., Sapone, A., Cantelli-Forti, G., 1996. Molecular non-genetic biomarkers related to Fenarimol cocarcinogenesis: organ- and sex-specific CYP induction in rat. Cancer Letters, 101(2): 171-178.
  • Rodriguez-Ariza, A., Peinado, J., Pueyo, C., López-Barea, J., 1993. Biochemical indicators of oxidative stress in fish from polluted littoral areas. Canadian Journal of Fisheries and Aquatic Sciences, 50(12): 2568-2573.
  • Salvemini, F., Franzé, A., Iervolino, A., Filosa, S., Salzano, S., Ursini, M.V., 1999. Enhanced glutathione levels and oxidoresistance mediated by increased glucose-6 phosphate dehydrogenase expression. The Journal of Biological Chemistry, 274(5): 2750-2757.
  • Salvo, L.M., Bainy, A.C., Ventura, E.C., Marques, M.R., Silva, J.R., Klemz, C., Silva De Assis, H.C., 2012. Assessment of the sublethal toxicity of organochlorine pesticide endosulfan in juvenile common carp (Cyprinus carpio). Journal of Environmental Science and Health, Part A, Toxic/Hazardous Substances & Environmental Engineering, 47(11): 1652-1658.
  • Stanton, R.C., 2012, Glucose-6-phosphate dehydrogenase, NADPH, and cell survival. İnternational Union of Biochemistry and Molecular Biology life Life, 64(5): 362-369.
  • Şentürk, M., Ceyhun, S.B., Erdoğan, O., Küfrevioğlu, Ö.İ., 2009. In vitro and in vivo effects of some pesticides on glucose-6-phosphate dehydrogenase enzyme activity from rainbow trout (Oncorhynchus mykiss) erythrocytes. Pesticide Biochemistry and Physiology, 95(2): 95-99.
  • Topal, A., Atamanalp, M., Oruç, E., Kırıcı, M., Kocaman, E.M., 2014. Apoptotic effects and glucose-6-phosphate dehydrogenase responses in liver and gill tissues of rainbow trputtreated with chlorpyrifos. Tissue & Cell, 46(6): 490-496.
  • Ventura, C., Nieto, M.R., Bourguignon, N., Lux-Lantos, V., Rodriguez, H., Cao, G., Randi, A., Cocca, C., Núñez, M., 2016. Pesticide chlorpyrifos acts as an endocrine disruptor in adult rats causing changes in mammary gland and hormonal balance. The Journal of Steroid Biochemistry and Molecular Biology, 156: 1-9.
  • Zhang, H., Wang, X., Zhuang, S., Qian, M., Jiang, K., Wang, X., Xu, H., Qi, P., Wang, Q., 2012. Enantioselective separation and simultaneous determination of fenarimol and nuarimol in fruits, vegetables, and soil by liquid chromatography-tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 404(6-7): 1983-1991.
Türkiye Tarımsal Araştırmalar Dergisi-Cover
  • ISSN: 2148-2306
  • Başlangıç: 2014
  • Yayıncı: SİİRT ÜNİVERSİTESİ ZİRAAT FAKÜLTESİ
Sayıdaki Diğer Makaleler

Yabani Ravent (Rheum ribes L.)’in Doku Kültürü ile Çoğaltım Olanakları Üzerine Araştırma

Burcu TUNCER, Büşra GÜNSAN

Research on Overcoming the Dormancy Problem of Molekhia (Corchorus olitorius L.) Seeds

Burcu TUNCER, Fatima UMMUHAN

The Effects of Fenarimol and Methyl Parathion on Glucose 6-Phosphate Dehydrogenase Enzyme Activity in Rats

Ferda ARI, Egemen DERE, Hakan TOSUNOĞLU, İmren ALİOĞLU

Siirt İli Küçükbaş Hayvan İşletmelerinde Barınakların Mevcut Durumu

Galip BAKIR, Nazire MİKAİL, Serkan BAYGELDİ

Aşılı ve Aşısız Domates Yetiştiriciliğinde Sıvı Yosun Gübresi Kullanımının Verim ve Beslenme Üzerine Etkileri

Damla BENDER ÖZENÇ, Osman ŞEN

Yarı Kurak İklim Koşullarında Farklı Ekim Zamanı ve Bitki Sıklıklarının İkinci Ürün Susam (Sesamum indicum L.)’da Verim ve Bazı Parametreler Üzerine Etkilerinin Belirlenmesi

Servet ABRAK, Ahmet YILMAZ

Sarıgöl Ovası Yer Altı Su Kaynaklarının Sulama Amaçlı Kalitesinin Değerlendirilmesi

Hüseyin YENER, Ali Rıza ONGUN

Seçilmiş Bazı Yabani Erik Anaç Adaylarının Kayısılarda Bazı Makro Besin Maddeleri Alımına Etkileri

Remzi UĞUR, Sevgi PAYDAŞ KARGI

Karpuz Genotiplerinde [Citrullus lanatus (Thunb.) Mansf.] Tohum ve Fide Yaprak Özellikleri ile Tuz Toleransı Arasındaki İlişkinin Belirlenmesi

Özlem ÜZAL, Fikret YAŞAR

Karasal İklim Kuşağında Bulunan Bir Meranın Farklı Yöneylerinde Botanik Kompozisyonun, Ot Verimi ve Ot Kalitesinin Belirlenmesi

Abdurrahman YILDIZ, Mehmet Arif ÖZYAZICI